

10.3 Drainage Strategy

Lomond Banks

Appendix 10.3 – Drainage & SuDS Strategy

On behalf of

Project Ref: 332010549/DS | Rev: - | Date: April 2022

Document Control Sheet

Project Name: Lomond Banks			
Project Ref:	332010549		
Report Title:	Drainage & SuDS Strategy		
Doc Ref:	332010549/DS		
Date:	April 2022		

	Name	Position	Signature	Date
Prepared by:	Scott MacColl	Senior Engineer	SML	28 th April 2022
Reviewed by:	David Warren	Principal Engineer	fre fr	28 th April 2022
Approved by:	Neil McLean	Senior Associate	alei Mile =	28 th April 2022
For and on behalf of Stantec UK Limited				

Revision	Date	Description	Prepared	Reviewed	Approved

This report has been prepared by Stantec UK Limited ('Stantec') on behalf of its client to whom this report is addressed ('Client') in connection with the project described in this report and takes into account the Client's particular instructions and requirements. This report was prepared in accordance with the professional services appointment under which Stantec was appointed by its Client. This report is not intended for and should not be relied on by any third party (i.e. parties other than the Client). Stantec accepts no duty or responsibility (including in negligence) to any party other than the Client and disclaims all liability of any nature whatsoever to any such party in respect of this report.

Contents

1	Intro	duction1
	1.1	Appointment and Brief1
	1.2	Proposed Development1
	1.3	Drainage Strategy Requirements2
	1.4	Terminology4
	1.5	Assumptions Made5
2	Exist	ing Conditions6
	2.1	Site Location
	2.2	Site Topography6
	2.3	Land Use6
	2.4	Geology
	2.5	Existing Drainage7
	2.6	Watercourses7
3	Wate	r Regulatory Process9
	3.1	Water Framework Directive and Water Environment & Water Services (Scotland) Act 2003
4	Site I	Drainage Strategy 13
	4.1	Proposed Development
	4.2	Foul Drainage
	4.3	Surface Water Drainage
5	SuDS	S Strategy 20
	5.1	Site Topography20
	5.2	Treatment/Water Quality
	5.3	Attenuation
	5.4	Design for Exceedance
	5.5	Approvals and Adoption
	5.6	Construction
	5.7	Maintenance
6	Conc	lusions

Figures

Figure 4-1 Woodbank Conceptual SuDS Layout	18	8
Figure 4-2 West Riverside Conceptual SuDS Layout	19	9

Tables

Table 3-1 CAR Authorisations	11
Table 4-1 Calculated Foul Flows	14
Table 4-2 Woodbank Runoff Rates	16
Table 4-3 West Riverside Runoff Rates	16

Table 5-1 Simple Index Approach Summary	21
Table 5-2 Treatment Volume (Vt)	
Table 5-3 Attenuation Volumes	23
Table 5-4 Maintenance requirements for swale	24
Table 5-5 Maintenance requirements for permeable paving	25
Table 5-6 Maintenance requirements for detention basins	25
Table 5-7 Maintenance requirements for pond/wetland	26
Table 5-8 Maintenance requirements for Filter Drain	27

Appendices

Appendix A	Correspondance with Relevent Authorities
Appendix B	Scottish Water Asset Plan
Appendix C	Site Location Plan
Appendix D	Development Accommodation Schedule
Appendix E	MicroDrainage Calculations
Appendix F	Conceptual Drainage and SuDS Layout

1 Introduction

1.1 Appointment and Brief

- 1.1.1 This drainage and SuDS strategy has been prepared by Stantec UK Ltd to support an application for planning permission in principle (PPiP) for the erection and operation of a proposed tourism and leisure-led mixed-use development ("the proposed development") on land at West Riverside and Woodbank House, Balloch ("the site"). The planning application is submitted on behalf of Flamingo Land and Scottish Enterprise ('the Applicants') to the Loch Lomond and the Trossachs National Park Authority (LLTNPA) as the relevant local planning authority.
- 1.1.2 The objective of this report is to inform the client of key foul, surface water drainage and sustainable drainage systems (SuDS) issues and constraints, which may influence the development process and provide an integrated drainage solution for site development whilst ensuring compliance with all current design guidance and best management practice.
- 1.1.3 The report describes the existing foul and surface water drainage networks, and identifies the drainage and SuDS features to be introduced to service the development as well as identifying the proposed discharge locations for the foul drainage and surface water drainage.
- 1.1.4 This report has been prepared solely for the development described within this report and no responsibility is accepted to any third party for all or part of this report.
- 1.1.5 This report is copyright © Stantec UK Ltd. All rights reserved.

1.2 Proposed Development

1.2.1 The proposed development comprises the erection and operation of a tourism and leisure-led mixed-use development, including:

Station Square

- Refurbished tourist information building;
- 32-bedspace budget accommodation;
- 1200m2 craft brewery and visitor centre;
- 150m² restaurant;
- Enhanced public square;
- Performance Amphitheatre (400m² performance space, 200m² storage); and
- Monorail Station.

Riverfront

- 43 Forest lodges;
- Picnic, BBQ and Playground area;
- Monorail; and
- Riverside Walkway.

Drumkinnon Wood

- Managed Woodland; and
- 700m² staff and service area.

Pierhead

- 60-bedroom Apart-hotel;
- Leisure / pool / water park area up to approximately 2,500m²;
- Reception & Atrium;
- Monorail Terminal and Attractions (incl staff areas); and
- Water Sports Hub boathouses.

Woodbank

- 37 large lodges, 30 smaller lodges and 17 bothies;
- 15 new flats within Woodbank House, 6 self-catering properties within ancillary buildings;
- Woodland planting; and
- Boathouse activity centre and storage (95m²).

Other

- Associated parking (up to 320 additional spaces), landscaping and infrastructure development works; and
- Access to be taken from the surrounding road network including Ben Lomond Way and Pier Road.
- 1.2.2 A more detailed description of the proposed development is provided in **Chapter 3 The Proposed Development** in **EIA Report Volume 1 – Main Text** which accompanies the planning applications for the proposed development.
- 1.2.3 The key physical elements of the proposed development are shown on the submitted **Site Layout Plan**. Additional drawings are also provided in support of the planning application to illustrate specific elements of the proposed development.

1.3 Drainage Strategy Requirements

- 1.3.1 Drainage is a material consideration in the determination of planning applications. An acceptable method of disposal for both foul and surface water must be demonstrated.
- 1.3.2 For the consideration of drainage strategies, the scope of the report should follow the guidance outlined in Water Assessment and Drainage Assessment Guide¹ produced by the Sustainable Urban Drainage Scottish Working party (SUDSWP). The intention of this guidance is to help guide those involved with the installation of water and drainage infrastructure through the necessary stages required to obtain relevant permissions, whilst complying with current standards and policies.
- 1.3.3 For the purposes of this drainage strategy, the following key areas outlined in the Water Assessment and Drainage Assessment Guide have been considered:
 - Surface Water and SuDS general considerations;
 - Foul water; and
 - SuDS hydraulic design considerations.
- 1.3.4 The key planning legislation of relevance to this Drainage Strategy:
 - The National Parks (Scotland) Act 2000 as amended; and

¹ Water Assessment and Drainage Assessment Guide, available at: <u>https://www.sepa.org.uk/media/163472/water assessment and drainage assessment guide.pdf</u>

 Loch Lomond and the Trossachs National Park Authority (LLTNPA) Local Development Plan 2017-2021.

National Parks (Scotland) Act 2000

- 1.3.5 Section 1 of the National Parks (Scotland) Act 2000 as amended identifies the four aims of Scotland's National Parks including Loch Lomond and the Trossachs National Park (LLTNP), namely:
 - "(a) to conserve and enhance the natural and cultural heritage of the area;
 - (b) to promote sustainable use of the natural resources of the area;
 - (c) to promote understanding and enjoyment (including enjoyment in the form of recreation) of the special qualities of the area by the public; and
 - (d) to promote sustainable economic and social development of the area's communities".
- 1.3.6 These National Park aims are material planning considerations.

Loch Lomond and the Trossachs Local Development Plan 2017-2021

- 1.3.7 The current statutory Development Plan applicable to the site of the proposed development comprises the Loch Lomond and the Trossachs Local Development Plan 2017 2021 ('the LDP'), which was adopted by LLTNPA in December 2016, and associated adopted Supplementary Guidance.
- 1.3.8 Section 4 of the LDP sets out three overarching policies which apply to all development proposals, followed by a suite of subject specific policies. Policies of relevance to the proposed development which should be considered in this Drainage Strategy are highlighted in Table 1.1 below.

LDP Policy Title	Summary		
	Sets out principles linking the LDP with the Scottish Planning Policy (SPP, 2014 –All proposals should demonstrate their accordance with relevant principles, including:		
	Collective achievement of the four statutory National Park aims and implementation of the National Park Partnership Plan;		
Overarching Policy 1 - Strategic Principles	 Contributing to sustainable development and climate change mitigation, including through sustainable design; 		
	"Addressing climate change impacts";		
	"Avoiding significant flood risk";		
	 "Relating well to the landscape context and setting", including in terms of cultural heritage and local built form"; and 		
	 "Incorporating appropriate soft and hard landscaping, a planting scheme, and measures to protect existing trees and other landscape features". 		
Overarching Policy 2 -	Provides high level design and environmental assessment criteria to assess all proposals, including the following of relevance to the PPiP application for the proposed development:		
Development Requirements	 "Safeguard visual amenity and important views, protect and/or enhance rich landscape character, and features and areas specifically designated for their landscape values at any level; 		
	• avoid any significant adverse impacts of: flooding,		

Table 1-1 Relevant Planning Policies

LDP Policy Title	Summary		
	 protect and/or enhance the biodiversity, geodiversity, water environment, sites and species designated at any levelincluding ancient and semi-natural woodland, green infrastructure and habitat networks; 		
Natural Environment Policy 11 - Protecting the Water Environment	Requires proposals not to have a significant adverse effect on the water environment.		
Natural Environment Policy 12 - Surface Water and Wastewater Management	Requires proposals to connect to public sewers where available.		
Natural Environment Policy 13 - Flood Risk	Requires compliance with the SPP (2014) Flood Risk Framework.		

1.3.9 Local Authority guidance states that SuDS will be required for any developments, with few exceptions, including single dwellings, and where the surface water discharge is made directly to coastal waters. This will be incorporated into the overall design of the development. SuDS features will provide treatment of surface water runoff which will be allowed to discharge to receiving waters at greenfield runoff rates. SuDS will be designed in accordance with CIRIA C753 The SuDS Manual. Correspondence with can be found in **Appendix A**.

1.4 Terminology

- 1.4.1 The following terminology has been adopted in this report:
 - Catchment the area contributing flow to a point on a drainage system;
 - Curtilage land area within property boundaries;
 - Drain a private or un-adopted pipe;
 - Foul drainage the infrastructure that drains water and sewage that is discharged from properties;
 - Gully opening in the pavement, usually covered by metal grates, which allows water to enter conventional drainage systems;
 - Permeable paving pavement construction that allows road runoff to infiltrate through the surface layer to underlying treatment and storage media;
 - Runoff water flow over the ground surface to the drainage system. This occurs if the ground is impermeable, saturated or rainfall is particularly intense;
 - Sewer a pipe or channel taking domestic foul and/or surface water from buildings and associated paths and hardstanding from two or more curtilages and having a proper outfall, vested and maintained by the sewerage undertaker;
 - Surface Water water that appears on the land surface, i.e. ponds, rivers, streams, standing water, lochs;
 - Swale A shallow vegetated channel designed to convey and retain surface water runoff, and which can also allow for infiltration. The vegetation filters suspended solids;
 - Watercourse a natural or artificial channel that conveys surface water; and
 - Wayleave a right of access to the route of a pipeline or service crossing privately owned land.

1.5 Assumptions Made

- 1.5.1 The areas stated in this document are indicative only and should not be considered as binding maxima and minima.
- 1.5.2 This report has been prepared solely for the development. Therefore, no responsibility is accepted to any third party for all or any part of this report in connection with any other development.
- 1.5.3 This report does not address in any detail the temporary situation, i.e. during the construction phase of any part of the proposed development, which may have implications on the foul and surface water drainage.

2 **Existing Conditions**

2.1 Site Location

- 2.1.1 A **Site Location Plan** to identify the site in the context of neighbouring land and the surrounding area is contained in **Appendix A**.
- 2.1.2 The site of the proposed development comprises approximately 26.77 a of land, situated to the north of Balloch at the southern tip of Loch Lomond. The site contains two distinct but contiguous areas, known for the purposes of this DS and the PPiP application as West Riverside and Woodbank House. The West Riverside area encompasses the south western bank of the River Leven at its confluence with Loch Lomond and extends eastwards across Drumkinnon Wood, whereas the Woodbank House area comprises the remains of the Grade A listed Woodbank House hotel, associated structures and attendant grounds.

2.2 Site Topography

- 2.2.1 The general topography of the site falls from the west down to the east towards Loch Lomond and the River Leven. In the west of the site surrounding Woodbank House and adjacent to the A82, the ground is at a maximum elevation of approximately 45mAOD. From here the ground slopes down relatively steeply towards Old Luss Road, beyond which the ground levels off and undulates at 15-19m AOD. Adjacent to the shores of the Loch, the ground level is approximately 7.5mAOD.
- 2.2.2 Within Drumkinnon Wood the ground levels undulate significantly, but in general slope from the west to the east towards Pier Road, from a level of approximately 16mAOD down to approximately 12mAOD.

2.3 Land Use

- 2.3.1 The site currently consists of a range of different uses including leisure and recreation (water sports) along the shores of the loch, several areas of car parking which serve the public slipways as well as the neighbouring Loch Lomond Shores development, areas of woodland through Drumkinnon Woods and open parkland along the banks of the River Leven.
- 2.3.2 A tourist information and visitor centre is located at the south eastern point of the site, opposite Balloch train station and Sweeney's Cruises.

2.4 Geology

Bedrock Geology

2.4.1 The British Geological Survey's (BGS) geological data (BGS, n.d.-a) (1:50,000 scale) indicates that the site is underlain by Teith Sandstone Formation. No fault lines are present within the site.

Drift Deposits

2.4.2 The BGS (BGS, n.d.-b) data indicates that the superficial deposits are predominantly formed of Glaciofluvial Deposits - Gravel, Sand and Silt, which cover the southern and western parts of the site. To the north and surrounding the shore of Loch Lomond the superficial deposits consist of Raised Marine Deposits of Holocene Age - Clay, Silt, Sand and Gravel.

Soils

2.4.3 Soil survey of Scotland 1:25,000 scale mapping (Soil Survey of Scotland Staff, n.d.) shows the site to be underlain by brown soils which have been stated to have parent materials of fluvioglacial sands and gravels derived from acid schists and Lower Old Red Sandstone sediments and lavas.

Hydrogeology

- 2.4.4 The Hydrogeological Map of Scotland (BGS, n.d.-c) shows that the site is underlain by the Strathmore Group, a moderate to highly productive aquifer with intergranular/fracture flow.
- 2.4.5 The Hydrogeological Maps highlight that superficial deposits classified as glaciofluvial are associated with high productivity intergranular flow, and raised marine deposits would be classified under low to moderate productivity with intergranular flow in the region of 0.1-10l/s.
- 2.4.6 The aquifer vulnerability is classed as 4a in the Groundwater Vulnerability dataset (Ó Dochartaigh, Doce, Rutter & MacDonald, 2011). Class 4a is groundwater which is described as being 'vulnerable to those pollutants not readily absorbed or transformed, and may have low permeability soil and less likely to have clay present in superficial deposits.'
- 2.4.7 Under the RBMP the development site is located within the *Loch Lomond and Leven Sand and Gravel (ID:150766)* and *Balloch (ID:150651)* groundwater bodies, both of which have overall classifications of Good.

2.5 Existing Drainage

- 2.5.1 Based on a Scottish Water Asset Plan, provided in **Appendix B** It is understood that much of the existing foul drainage in the area is captured in combined sewers, which carry wastewater to the Ardoch Wastewater Treatment Works in Dumbarton. It is assumed that there is no existing surface water infrastructure on site.
- 2.5.2 There is an existing pumping station on site, which is owned by Scottish Enterprise (SE) but is managed on their behalf by Saltire Property Management Ltd (SPM), who have a service agreement with the proprietors of Loch Lomond Shores. Limited information is available on the capacity or service agreements for the existing pumping station. The strategy therefore will make provision for a new pumping station, which will be subject to change should more information on the existing station become available and it can be ascertained that the proposed development can be accommodated within it.

2.6 Watercourses

2.6.1 There are four watercourses which have been identified as flowing through the site. The major watercourse is the River Leven which flows to the east of the site. To the west of the site there are two smaller unnamed watercourses which are described in more detail below. A fourth smaller watercourse is marked upon the Ordnance Survey mapping within the wooded area at Woodbank House. A plan showing the location of these watercourses is presented as Figure 10.1 in Appendix 10.1 – Figures. Additional details including photographs from the site walkover are included in Appendix 10.2 - Flood Risk Assessment.

River Leven

- 2.6.2 The River Leven flows to the east of the site in a southerly direction. It rises at the outflow from Loch Lomond to the north of the development site, and routes south through the towns of Balloch and Alexandria to outfall into the River Clyde at Dumbarton. The river is approximately 11.5km long and has tidal influence for approximately 5km upstream from its confluence with the River Clyde.
- 2.6.3 Adjacent to the site, the river is approximately 85-90m wide and contains a number of floating pontoons for mooring boats. Approximately 550m downstream of the Balloch Station area of the site, the River Leven Barrage is located. This is operated by Scottish Water and controls the outflow from the loch limiting the discharge and maintains water levels within Loch Lomond between 7 and 7.6m Above Ordnance Datum (AOD). However, it is not formally operated as a flood prevention structure.
- 2.6.4 Scotland's River Basin Management Plan (RBMP)(Scottish Government, 2014) classified the River Leven in 2016 as a heavily modified water body on account of physical alterations that cannot be addressed without a significant impact from an increased risk of subsidence or flooding. As such this has been classified as having Moderate ecological potential.

Loch Lomond

- 2.6.5 Loch Lomond is located to the north of the site and has a surface area of approximately 71 km². Areas within and adjacent to the water body are designated Special Protection Areas (SPA), Sites of Special Scientific Interest (SSSI), Special Areas of Conservation (SAC), Ramsar Sites and National Nature Reserves. The loch is located wholly within the Loch Lomond and The Trossachs National Park and is used extensively for recreational use.
- 2.6.6 The RBMP classified Loch Lomond (south, ID:100257) as having a Moderate overall status in 2016.

Unnamed Watercourse 1

2.6.7 The Unnamed Watercourse 1 rises in the hills to the west of the A82. The burn flows in an easterly direction along the north-western boundary and passes beneath Old Luss Road before routing north of the existing car park and Loch Lomond Shores development. It outfalls into Loch Lomond at the end of a small headland in the bay north of the site.

Unnamed Watercourse 2

- 2.6.8 Unnamed Watercourse 2 also rises in the hills to the west of the site and the A82, and routes in an easterly direction towards Drumkinnon Farm. The burn flows through a small caravan park to the south of the site and below Lower Stoneymollan Road before routing along the boundary of the Woodbank House area of the site. The burn then passes below Old Luss Road and routes north towards the car park of the Loch Lomond Shores complex. The burn routes through a number of culverts as it passes beneath access roads and flows through an open channel through the car park area.
- 2.6.9 Downstream of the car park the burn routes to the east and flows parallel with unnamed watercourse 1 towards Loch Lomond where it outfalls adjacent to the aerial adventure course.

Unnamed Watercourse 3

2.6.10 Within the Woodbank House area of the site a small watercourse is shown on plan routing in an easterly direction before it sinks, with no downstream route marked on the maps. During the site walkover there was water present within the channel however there was very little flow. The channel appeared to route into a culvert structure, but it is not known where this routes to or if it discharges into the unnamed watercourse 1. There were no visible signs of a culvert downstream across this area of the site. During the site walkover for ecological surveys, as noted in **Chapter 5 - Ecology**, it was noted that there were no flows within this channel, indicating that flows within this channel may be intermittent and dependent upon runoff.

3 Water Regulatory Process

3.1 Water Framework Directive and Water Environment & Water Services (Scotland) Act 2003

- 3.1.1 The Water Environment and Water Services (Scotland) Act 2003 (WEWS) transposes the Water Framework Directive into national law and provides a framework to assess, protect and enhance the water environment in Scotland. The Water Environment (Controlled Activities) (Scotland) Regulations 2011, as amended, (CAR) mean that from the 1st April 2007, it is an offence to undertake the following activities without a CAR authorisation:
 - Discharges to all wetland, surface waters and groundwaters;
 - Disposal to land (replacing the Groundwater Regulations 1998);
 - Abstractions from all wetlands, surface waters and groundwaters;
 - Impoundments (dams and weirs) of rivers, lochs, wetlands and transitional waters; and
 - Engineering works in inland waters and wetlands.
- 3.1.2 CAR was updated in 2017 and the CAR practical guide has since been updated to Version 9 in January 2022. The revised guide provides updates to pollution control and engineering regimes, a summary of which can be found below:

Pollution Control Regime

- Oil Storage now covered by new GBRs 26, 27 and 28;
- Sites where there is an onward distribution of oil new Licence requirement for those not able to comply with GBR28;
- Application of pesticide revised GBR23 and new Registration and Licence;
- Construction site SUDS revised GBR10 and new Licence;
 - Discharge of water run-off from a construction site to the water environment where the site exceeds 4 hectares;
- Direct discharge into groundwater of grout containing blaes for the purpose of construction or maintenance works – new Registration, and
- A licence is now required for surface water discharge from 60 hectares of residential development (>1000 houses previously) and A roads are now included.

Engineering Regime

- Operating vehicles in or near a surface water or wetland revision to GBR9 the Registration for this activity has been removed;
- Bank protection using trees new GBR25 Registration has been removed; and
- Updated information text in relation to contacting local District Salmon Fishery Boards or Trusts for advice.
- 3.1.3 A CAR authorisation is intended to control impacts on the water environment. It does not cover wider impacts that may be related to a development, such as visual impact or damage to terrestrial ecosystems. Under CAR, three types of authorisation allow for proportionate and risk-based regulation:
 - General Binding Rules;
 - Registration, and
 - Licence.

- 3.1.4 GBRs represent the lowest level of control and include the discharge of surface water runoff. GBR activities taking place in accordance with the rules do not require an application for authorisation from SEPA, and therefore, there are no associated charges. The GBR activities specified by schedule 3 of CAR include:
 - The operation of any weir that does not result in a level difference of more than 1m between the upstream and downstream water surfaces;
 - The abstraction of less than 10m³ per day;
 - The construction or extension of any well, borehole or other works by which water may be abstracted, where such works are:
 - Not intended for abstraction; or
 - Intended for the abstraction of less than 10m³ in any one day; or
 - Intended for the abstraction of less than 150m³ in any period of one year.
 - The abstraction from a borehole for sampling or testing;
 - The dredging of a river, burn or ditch that:
 - Has an average width less than 1m at the stretch to be worked, measured at the bottom of the channel; and
 - Has been artificially straightened or canalised along the length to be worked.
 - The construction of minor or temporary bridges;
 - The laying of a pipeline or cable by boring beneath the banks and bed of a river, burn or ditch;
 - Works to control the erosion of a bank of a river, burn or ditch revetment;
 - Operating any vehicle, plant or equipment for the purposes of the above activities;
 - Discharge of water runoff from a surface water drainage system to the water environment from construction sites, buildings, road, yards or any other built developments; and
 - Discharge into a surface water drainage system.
- 3.1.5 **Registrations** allow for the recording of small-scale activities, which individually pose a small environmental risk but, cumulatively, can result in environmental harm. Operators must apply to SEPA to register these activities, for which there is an application fee.
- 3.1.6 Licences allow for site-specific conditions to be set to protect the water environment. They will be able to cover linked activities occurring at a number of sites over a wide area, as well as multiple activities on a single site. Application fees apply to all licences. SEPA has divided licence activities into simple licence and complex licence activities dependent on the risk and scale.

Pollution Control

- 3.1.7 The Water Environment and Water services Act (WEWS) requires any activity that is liable to cause pollution is to be authorised. SEPA will use these powers to control point source discharges of pollution.
- 3.1.8 CAR Authorisation GBR 10 refers to the discharge of water runoff from a surface water drainage system to the water environment from construction sites, buildings, roads, yards or any other built developments and states under part (d):
 - The discharge shall not contain any water runoff from any buildings, roads, yards or other built developments, the construction of which is completed after 1st April 2007, or from construction sites operated after 1st April 2007, unless:

- i. During construction those developments or construction sites are drainage by a SuD system or equivalent equipped to avoid pollution of the water environment;
- ii. Following construction those developments are drained by a SuD system equipped to avoid pollution of the water environment;
- iii. The runoff is from a development that is a single dwelling and its curtilage; or
- iv. The discharge is to coastal water.
- 3.1.9 The levels of authorisation applicable for point source-controlled activities relating to the drainage for the proposed development are outlined in **Table 3-1**:

General Binding Rule	Registration	Simple Licence	Complex Licence
Sewage and Organic Effl	uents	•	
	Organic effluents ≤15pe (including discharges to soakaways)	Organic effluents >15– 100pe	Organic effluents >100pe
	Sewage: proposed or has been in use less than 2 years serving ≤3 domestic properties or for nondomestic developments serving ≤15pe (including discharges to soakaways)	Sewage: proposed or has been in use less than 2 years >15pe – 100pe	Sewage >100 pe
		Low significance CSOs	Medium and high significance CSO
			Emergency overflows
Surface Water Drainage			
Discharge of water run- off from a surface water drainage system to the water environment from buildings, roads other than waterbound roads, yards or any other built development constructed before 1 April 2007, unless covered by one of the listed exceptions [GBR10A]		Discharge of water run- off from a surface water drainage system to the water environment from any motorway/trunk road where any one outfall serves a length of road >1km and the road was either constructed before 1 April 2007 and the footprint of the road or its associated infrastructure is enlarged or otherwise altered on or after 1 April 2007, or the road was constructed on or after 1 April 2007.	
Discharge of water run- off from a surface water drainage system to the water environment from buildings, roads other than waterbound roads, yards or any other built development constructed on or after 1 April 2007, unless covered by one of the listed exceptions [GBR10B]		Discharge of water run- off from a surface water drainage system to the water environment from: land of >30 hectares used for residential premises; industrial estates; or land used as a motorised vehicle parking area with >1,000 parking spaces; in each case where constructed on or after 1 April 2007.	
Discharge of water run- off from a quarry or borrow pit constructed on			

Table 3-1 CAR Authorisations

General Binding Rule	Registration	Simple Licence	Complex Licence
or after 1 January 2022			
[GBR10C]			
Discharge of water run-		Discharge of water run-	
off from a construction		off from a construction	
site to the water		site to the water	
environment where the		environment where the	
site, including any		site, including any	
constructed access		constructed access	
tracks, does not: (i)		tracks: (i) exceeds 4	
exceed 4 hectares; (ii)		hectares; (ii) contains a	
contain a road or track		road or track length in	
length in excess of 5km;		excess of 5km; or (iii)	
or (iii) include any area of		includes any area of	
more than 1 hectare or		more than 1 hectare or	
any length of more than		any length of more than	
500 metres on ground		500 metres on ground	
with a slope in excess of		with a slope in excess of	
25°. [GBR10D]		25°	
Discharge of surface			
water from waterbound			
roads and tracks,			
including during the			
construction and			
maintenance of such			
roads and tracks			
[GBR22]			

p.e. population equivalent

CSO Combined sewer overflow

- 3.1.10 The proposed development construction phase will require a simple licence application to be made with accompanying pollution prevention plans, prepared in accordance with SEPA's Supporting Guidance WAT-SG-75.
- 3.1.11 The Simple Index Approach should be utilised to establish the amount of treatment required for developments such as the development site at West Riverside. This is discussed further in Section 5.2 of this report.

4 Site Drainage Strategy

4.1 Proposed Development

- 4.1.1 The proposed development comprises the erection and operation of a tourism and leisure-led mixed-use development.
- 4.1.2 A more detailed description of the proposed development is provided in **Section 1.2** of this report and **Chapter 3 The Proposed Development** in **EIA Report Volume 1 Main Text** which accompanies the planning application for the proposed development.
- 4.1.3 The key physical elements of the proposed development are shown on the submitted **Site Layout Plan**. Additional drawings are also provided in support of the planning and marine licence applications to illustrate specific elements of the proposed development.

4.2 Foul Drainage

Flows

- 4.2.1 The assessment of foul flows has been undertaken using the flow data presented in the British Water Code of Practice Flows and Loads 4 Sizing Criteria, Treatment Capacity for Sewage Treatment Systems, and Sewers for Scotland 4th Edition, with the peak flows, for sewer design, calculated as 6 times the dry weather flow (DWF). Foul flows were calculated based upon a Development Accommodation Schedule, available in **Appendix D**.
- 4.2.2 Calculated foul flows are shown in Table 4-1.

Table 4-1 Calculated Foul Flows

		Flow		w (I/sec)
	Foul Discharge	Average 12hr	Average	Peak ¹
Brewery			, the stage	
	Details provided by brewery		0.150	1.000
	Restaurant (Stati	on Square)		
	Estimated 85 covers/day			
	F&Ls4 ² = Pre-prepared food 25 l/cover			
	85 covers x 25 l = 2125l/day			
	Assume 12 hr day; 2125 l/12 hours		0.049	0.147
Hostel/Budget A				
	32 beds			
	F&Ls4 ² = students accom = 100/person			
	32 beds x 100l/day = 3,200 l/day		0.037	0.111
Tourist Office				
	F&Ls = Office no canteen = 100l/persor	1		
	Estimate 6 staff = 600 l/day		0.007	0.021
Forest Lodges				
· · · · · · · · · · · · · · · · · · ·	F&Ls = holiday camp chalet resident			
	227l/person and lodges are for 4 people	9		
	Riverfront - 43 lodges			
	Waterfront - 37 larger lodges, 30 smalle	r lodges, 17 bothies		
	Total 127 Lodges	U		
	127 lodges x 4 people x 227 = 115316l/	day	1.334	4.004
Apart Hotel				
	F&Ls = Hotel 250 l/person			
	60 beds = say 90 people			
	90 people x 250 l = 22500 l/day		0.260	0.781
Water Park ³				
	Estimate 500 users/day ⁴			
	Based on 10 l/person ¹		0.058	0.174
	·			0.694
Stoff Comiles and	Showers 40 l/person ¹		0.231	0.094
Staff Service are				
	F&Ls - office - no canteen Estimate of 15 staff			
	50l/person = 750 l/day		0.009	0.026
Residential			0.009	0.020
Residentia	Woodbank House - 15 flats, 6 self cater	ing		
	Assume 2001/person/day	"'Y		
	21 houses x 4 persons x 200l = 16800 l	/day	0.194	0.583
	·	Juay		
Neter	Total Discharge (litres/sec)		2.329	7.541
Notes; 1	Peak flows normally assumed as 3 time	es average flow		
2	F&Ls4 = British Water Code of Practice			
4		, 1 10W3 & LUQUS 4		

Layout

- 4.2.3 The proposed foul drainage layout network will comprise of a gravity closed pipe system located in the roads, verges and open spaces on-site. The intention would be for Scottish Water to adopt the new wastewater drainage infrastructure on the site. All foul drainage would therefore need to be designed to the standards contained in Sewers for Scotland, 4th Edition, 2018.
- 4.2.4 The Woodbank, and Drumkinnon Wood sections of the site can be drained under gravity and it is proposed that the foul sewers would connect into Scottish Water's existing combined sewers on Old Luss Road and Pier Road respectively. However, this would be subject to confirmation that there is sufficient capacity in the existing network to accept the flows from the development. The proposed network would generally follow the alignments of proposed and existing access roads and tracks before tying into the existing combined sewer network.
- 4.2.5 The riverfront section of the site presents a challenge for foul drainage as this area is extremely flat. The ground undulates with levels ranging between 10.0m and 11.0m AOD across the length of the Riverfront development area (approx. 500m). The gradients across sections of this area are as flat as 1:750 (0.13%). Providing a gravity sewer at an appropriate gradient for the expected flows, which can tie into the invert levels of the existing sewer network, is not possible without land raising or Scottish Water's approval to use oversize pipes laid at shallower gradients. This presents an issue, as SEPA have advised that they would oppose any proposal for land raising which encroaches on the fluvial flood plain of the River Leven.
- 4.2.6 Impacts on the floodplain could be avoided by reducing the platform areas such that the earthworks do not extend beyond the modelled extents of the flood plain. However, this would reduce the developable area. In addition, Scottish Water is unlikely to approve the use of oversize pipes laid at shallower gradients when the expected flows are unlikely to generate self-cleansing velocities in the sewer.
- 4.2.7 As a gravity-based system is unlikely to be a practical solution for connecting into the existing combined sewer network, it would be necessary to install a pumping station in the riverfront section of the site. A gravity sewer would capture foul drainage from the Riverfront and Pierhead areas of the site and direct it to the pumping station. This would pump the wastewater up a rising main to a connecting manhole on the existing combined sewer network at Balloch Road.
- 4.2.8 The existing pumping station on site is owned by Scottish Enterprise (SE) but is managed on their behalf by Saltire Property Management Ltd (SPM), who have a service agreement with the proprietors of Loch Lomond Shores. There may be an opportunity to connect the new drainage to this existing pumping station, thereby potentially removing the requirement for a new pumping station. An upgrade may be necessary to accommodate the additional flows.
- 4.2.9 Limited information is however available on the capacity or service agreements for the existing pumping station. The strategy therefore makes provision for a new pumping station at this time. This is subject to change should more information on the existing pumping station become available to ascertain that the proposed development flows can be accommodated within it.
- 4.2.10 A Pre-Development Enquiry (PDE) was made to Scottish Water to ascertain potential constraints that may be encountered due to existing infrastructure as well as ensuring they have suitable capacity within their network to accommodate foul flows from the development. Scottish Water's response, dated the 7th of May 2019 failed to indicate if suitable capacity was available in their network, however it did highlight three key areas of concern for Scottish Water:
 - The presence of a steel raw water main at high pressure running through the site near Hamilton House;
 - An existing combined sewer overflow pipe to the northeast of the site with a 3m standoff to this pipe; and
 - There is an existing 400mm surface water overflow at the south-east side of the site which may cause conflict with proposed development.
- 4.2.11 Correspondence with Scottish Water can be found in **Appendix A**.
- 4.2.12 The foul drainage layout and design should follow the guidance provided in Sewers for Scotland 4th Edition, 2018 and current design standards.

4.3 Surface Water Drainage

- 4.3.1 As noted in the previous section, much of the existing foul drainage in the area is captured in combined sewers and it is the intention for the proposed development to capture foul and surface water drainage separately, with surface water from roofs and impermeable areas being collected in an open swale network and/or a closed pipe gravity system prior to being treated and discharged back into the water environment using a variety of SuDS techniques. This has previously been discussed with SEPA and Scottish Water who were supportive of the approach.
- 4.3.2 The site is approximately 26.77h and therefore significant new surface water drainage infrastructure is required to service the various facilities proposed for the site. For the basis of drainage calculations, the site has been split into two drainage catchments: Woodbank and West Riverside with a contributing area of 9.4ha and 9.6ha, respectively. The remaining site area around Drumkinnon Wood is to remain as existing and has therefore been discounted from calculations going forward.

Flows

4.3.3 The existing greenfield runoff rates for the site have been calculated using MicroDrainage Source Control software for the 2, 30, 100 and 200-year storm events. Based on development proposals provided by Anderson Bell + Christie Architects, it has been calculated that a hardstanding area for Woodbank and West Riverside is representative of 20% and 30% of total site area, respectively, and should be used for the calculation of post development flows from the site, whilst 1% and 8% representative hardstanding area has been used for existing site runoff calculations. The results of both are presented in Table 4-2 and 4.3, respectively with full MicroDrainage calculations provided in Appendix E

Return Period (Years)	Existing Runoff – Woodbank (I/s)	Un-attenuated Runoff from Site Post-Development (I/s)
2	85.7	112.2
30	177.0	211.8
100	244.4	271.9
200	276.7	301.5

Table 4-2 Woodbank Runoff Rates

Table 4-3 West Riverside Runoff Rates

Return Period (Years)	Existing Runoff – West Riverside (I/s)	Un-attenuated Runoff from site post-development (I/s)
2	97.1	130.3
30	194.1	234.9
100	261.0	294.8
200	293.1	323.7



Layout

- 4.3.4 The proposed surface water drainage network servicing each area of the development will comprise of a network draining surface water runoff from roofs and other impermeable areas to SuDS treatment and attenuation features, described in more detail in Chapter 5 of this report. A conceptual drainage layout is provided in **Appendix F.**
- 4.3.5 Current proposals for the Woodbank area of the site include lodges as well as residential development and access roads. The proposed SuDS strategy for this area is shown in Figure 4.1. It is proposed that roadside swales be implemented to treat and attenuate the surface water runoff from the site before discharging to the watercourse at the southeast corner of the Woodbank site. An additional ponded area could be created here for further treatment and ecological benefits. Surface water falling onto the woodland area surrounding the Bothies would not require treatment and can be adequately dealt with at source using infiltration.
- 4.3.6 The Drumkinnon Wood area of the site will be retained as managed woodland and therefore no treatment or attenuation of surface water will be required in this area. Runoff from the service and deliveries area would require treatment in line with the SIA. Permeable paving could be constructed in parking bays to capture surface water runoff and provide the treatment and attenuation required. An alternative solution would be for the surface and roof runoff from this area to be conveyed to a SuDS pond/basin located to the south west prior to discharging to the small watercourse to the south west of the parking area. Both are viable options which could provide the required level of SuDS treatment and attenuation.

- 4.3.7 Surface water drainage of the Riverfront area of the site has the same issues as the foul drainage in that the site is very flat. Significant land raising would be required to provide a piped network with an outfall above the flood level. The proposed strategy therefore is for open channel systems to be implemented as flat as possible to manage treatment and attenuation of runoff, thereby avoiding land raising.
- 4.3.8 The SuDS strategy for the Riverfront area is shown in **Figure 4.2**. In parking areas out with the floodplain, it is proposed that permeable paving be introduced to treat and attenuate surface water at source. If ground conditions allow this could be constructed as an infiltration system. If conditions do not allow, then this could discharge to a detention basin or pond for additional treatment and attenuation prior to discharging to the River Leven.
- 4.3.9 It is proposed that a swale/under-drained swale be aligned with the access road running through the middle of the riverfront area from north to south. This would capture surface water runoff and provide treatment to the roof runoff from the lodges and car parking in the Pierhead area to the north prior to connecting to the surface water network upstream of the outfall. If finished levels in this area do not allow for a straight fall towards the outfall, then multiple outfalls at low spots within the swale system would be required to ensure the swale can be adequately drained. Alternatively, if ground conditions were favourable, this under-drained swale could be utilised as an infiltration system.

- 4.3.10 The roof runoff originating from the development to the north west is proposed to be picked up by filter drains enclosing the building footprint prior to discharge to the River Leven or through an outfall into the bay.
- 4.3.11 The outfalls for the SuDS basin is likely to be below the 1:200 Year + Climate Change flood level but efforts would be made to achieve the highest level possible to allow free flow from the basin in most situations and limit the attenuation needed during high return period events. Non-return duckbill or flap valves would be required to prevent the basin and drainage network from being surcharged by flood waters from the river.
- 4.3.12 The proposed SuDS features discussed here are described in more detail in Chapter 5 of this report, with a proposed drainage arrangement provided in **Appendix F.**

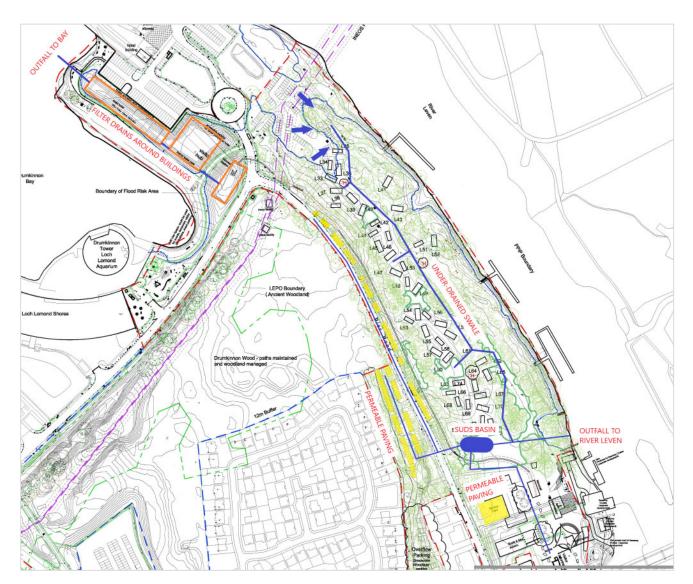


Figure 4-2 West Riverside Conceptual SuDS Layout

5 SuDS Strategy

5.1 Site Topography

- 5.1.1 The proposed finished site levels will take account of the existing levels. Given the flat nature of the existing ground at West Riverside, land raising was considered as part of the conceptual drainage design. However, due to part of the site being located within a floodplain, it was deemed that this would be undesirable due to SEPA requirements for compensatory storage to be provided to balance loss of floodplain within the site.
- 5.1.2 SEPA's requirements set out in *Technical Flood Risk Guidance for Stakeholders*, state an allowance for freeboard should be made. SEPA recommend a minimum 600mm freeboard to any finished floor levels, in line with CIRIA Guidance (*CIRIA C624 Development and Flood Risk Guidance for the Construction Industry 2004*) unless a more detailed assessment of freeboard is made.
- 5.1.3 Consideration should be given to road gradients to ensure compliance with the National Roads Development Guide². The low points on the site will most likely coincide with the location of the SuDS features throughout the site, and these will need to be kept out of the floodplain.

5.2 Treatment/Water Quality

- 5.2.1 Treatment of surface runoff that discharges to the water environment is a SEPA requirement in accordance with Regulatory Method (WAT-RM-08) for the regulation of urban drainage.
- 5.2.2 The main regulatory driver for SUDS is to protect water quality, and through construction of retrofit SuDS, to begin to achieve improved water quality, and reduce the length of polluted waters downgraded because of urban drainage impacts. For new developments, SuDS aim to protect water quality, which includes groundwater. Where groundwater pollution is identified as a risk, then appropriate SuDS such as lined SuDS to prevent groundwater pollution should be used.
- 5.2.3 SuDS should be designed in accordance with CIRIA C753 The SuDS Manual, and SuDS for Roads.
- 5.2.4 In accordance with current guidance, the Simple Index Approach should be employed to establish suitable SuDS features that could be utilised in the development to provide treatment prior to discharge to the water environment.

Surface Water Management Train

5.2.5 The philosophy of the SuDS 'Management Train' is to replicate natural drainage processes as closely as possible. This concept is fundamental to the design and implementation of a successful SuDS scheme where drainage techniques are used in series to incrementally reduce pollution, flow rates and volumes. The SuDS will be integrated within the landscape proposals to enhance amenity, biodiversity and habitat, whilst protecting and/or enhancing water quality.

Water Quality Treatment

- 5.2.6 CIRIA C753 The SuDS Manual (Chapter 26) provides guidance on methods that should be used to design SuDS to meet water quality requirements and design standards.
- 5.2.7 For the basis of assessing the water quality risk management for the site, the *"simple index approach"* is normally used to check the suitability of SuDS to provide adequate treatment of surface water runoff. This approach can be categorised into 3 key steps:
 - Allocate suitable pollution hazard indices for the proposed land use;

² National Roads Development Guide, available at: <u>http://localapps.pkc.gov.uk/internet/flashmag/councils/nationalroadsguide/roadsfeb2014.pdf</u>

- Select SuDS with total pollution mitigation index that equals or exceeds the pollution hazard index; and
- Where the discharge is to protect surface waters or groundwater, consider the need for a more precautionary approach.
- 5.2.8 It must be noted that in cases where the mitigation index of an individual component is insufficient, two components (or more) in series will be required, where:

Total SuDS mitigation index = mitigation index + 0.5 (mitigation index)

5.2.9 The Simple Index Approach (SIA) Tool (MS Excel) was used to determine the effectiveness of SuDS in providing suitable mitigation indices to exceed that of the pollution hazard index. The results of this exercise are shown in Table 5-1.

	Land Use		Pollution Index		Proposed	Mitigation Index			Suitability
			Metals	Hydrocarbons SuDS		TSS	Metals	Hydrocarbons	
	Commercial Roofing (Brewery etc)	0.3	0.2	0.05	Pond	0.7	0.7	0.5	
	Retail Car Park	0.7	0.6	0.7	Under-drained swale	0.7	0.8	0.8	
	Car Park (Pier Road)	0.7	0.6	0.7	Permeable Paving	0.7	0.6	0.7	
	Commercial Yard (Brewery)	0.7	0.6	0.7	Permeable Paving + Pond	>0.95	0.95	0.95	
	Commercial Roofing (Apart Hotel)	0.3	0.2	0.05	Filter Drain	0.4	0.4	0.4	
West Riverside	Residential Roofing (Lodges)	0.2	0.2	0.05	Swale/under- drained swale	0.5	0.6	0.6	
West Ri	Low traffic roads (access to lodges)	0.5	0.4	0.4	Swale/under- drained swale	0.5	0.6	0.6	
ank	Residential Roofing (Lodges)	0.2	0.2	0.05	Swale	0.5	0.6	0.6	
Woodbank	Low traffic roads (access to lodges)	0.5	0.4	0.4	Swale	0.5	0.6	0.6	

Table 5-1 Simple Index Approach Summary

- 5.2.10 The pollution Hazard Index for each land use area can be satisfied using the following SuDS features:
 - Swales A swale is a shallow, flat bottomed, vegetated open channel designed to convey and treat surface water runoff. When incorporated into the site design, they can be used to enhance the natural landscape and provide aesthetic and biodiversity benefits;
 - Infiltration Trench narrow stone filled trenches that can capture surface runoff from any catchment, but often alongside roads. Infiltration trenches allow slow discharge along their length to the underlying geology. Clearly, such geology needs to be

capable of receiving water, and where heavy clays and bedrock prevail, this becomes difficult, so infiltration trenches are best located in areas of good permeability;

- Filter Drain Similar to an infiltration trench, however the filter media is lined with a
 geotextile to prevent infiltration. Runoff can enter the filter drain as direct runoff or via
 a piped system;
- SuDS Pond These are permanent water bodies which provide additional flood storage for storm runoff above normally standing water levels. Ponds should provide biodiversity and habitat benefits and where possible amenity opportunities too. By slowing the flow of stormwater within the pond, sedimentation and other processes occur which lets contaminants receive passive treatment to reduce pollution to watercourses;
- Detention Basin These are normally dry, though they may have small permanent pools at the inlet and outlet. They are designed to fill during storm events and detain runoff as well as providing natural water quality treatment. After the storm has passed a slow drain-down occurs at a managed rate to control downstream flood risk, to return to the normal, generally dry condition of the basin; and
- Permeable Paving a form of pavement construction that allows road runoff to infiltrate through the surface layer to underlying treatment and storage media. Permeable surfaces along with their underling media, are an efficient means of managing surface water runoff close to its source.
- 5.2.11 The treatment volume, Vt, as described in CIRIA C753 The SuDS Manual, is based on an empirical formula linked to the M5-60 rainfall depth for the area, equivalent to approximately 10-20mm rainfall depths, and has been calculated using the following parameters for each of the areas of the site:

D - rainfall depths of a five-year return period storm of 60 minutes duration

SOIL - soil index broadly describes the infiltration potential

I – assumed impervious fraction for development

Vt = 9D {SOIL/2 + (1-SOIL/2) i} m³/hectare of site area

5.2.12 The treatment volumes required for the proposed development can be seen in Table 5-1.

Development Percentage M5-60 (mm) Vt (m³/ha) Site Area (Ha) Vt (m³) Area Impermeable (%) Woodbank 16.0 0.45 20 54.72 9.4 514.37 West Riverside 16.0 0.45 30 65.88 9.6 632.45

Table 5-2 Treatment Volume (Vt)

5.2.13 If treatment is provided below ground using gravel media, the volume of gravel media required would depend on its void ratio, otherwise if an above ground feature such as a swale is used, the treatment volumes, stated in **Table 5-2** will remain unchanged

5.3 Attenuation

5.3.1 In accordance with West Dunbartonshire Council requirements, the discharge rate from site shall be restricted to greenfield runoff rate for each equivalent storm event e.g., the 30-year post development flow is to be restricted to 30-year greenfield runoff rate.

- 5.3.2 A 55% allowance for climate change has also been included in all calculations for the site, as per SEPA's requirements.
- 5.3.3 Provisions of this volume of attenuation through SuDS will ensure that the treatment volume is achieved.
- 5.3.4 Calculated volumes are shown in **Table 5-3**, with full MicroDrainage calculations provided in **Appendix E**...

	Attenuation Volume Required (m ³)			
Development Area	2 Year	30 Year	100 Year	200 Year
Woodbank	146.8	256.3	314.9	436.5
West Riverside	290.9	527.7	711.7	847.1

Table 5-3 Attenuation Volumes

5.4 Design for Exceedance

5.4.1 As a result of extreme rainfall events, it is inevitable that the capacities of sewers, watercourses and other drainage systems will become exceeded on occasion. Overland flow analysis should be undertaken at the detailed design stage using finished site contours to determine where overland flows will be routed in extreme flood events when the pipe and manhole capacities within the network have been exceeded to ensure that all surface water flooding is contained on site. This analysis should conclude that proposed buildings are not at risk of flooding during extreme events and overland flows route to the River Leven or other receiving waters.

5.5 Approvals and Adoption

5.5.1 It is the intention that both foul water and surface water networks and SuDS within the development be adopted by Scottish Water. A Pre-Development Enquiry (PDE) has already been submitted to Scottish Water and an application for Technical Approval should follow at the detailed design stage.

5.6 Construction

- 5.6.1 During the construction of SuDS features, it is important that the risk of pollution to the site be kept to a minimum. A Pollution Prevention Plan and Method statements for the control of pollution will be provided by the developers, and/or their contractors outlining their pollution prevention measures prior to development commencing on-site.
- 5.6.2 Hazardous and environmentally damaging chemicals and other materials should be managed and stored to ensure that they do not enter the existing drainage systems or cause local soil contamination. Guidance on the handling and storage of materials on site is available from SEPA. Materials which fall into this category include:
 - Petrochemicals (e.g. fuel, lubricants);
 - Building materials (e.g. cement); and
 - General (e.g. excavation arising, mud, litter, site waste materials).
- 5.6.3 Please note that this is not a comprehensive list.
- 5.6.4 Care should be taken to ensure that any excavation works, and control of groundwater which may be necessary to facilitate the works, does not result in mobilisation of silts leading to contamination of any watercourses.
- 5.6.5 The works should be managed and sequenced to ensure that the risk of contaminated runoff or groundwater from the site entering the drainage systems is kept to a minimum. On site facilities

for containment and controlled release of runoff and groundwater to the existing drainage system should be implemented. These facilities should be designed to trap debris and allow settlement and collection of silt.

5.6.6 In relation to The Water Environment (Controlled Activities) (Scotland) Regulations 2011 (as amended), SEPA's *Practical Guide* states that a complex licence will be required for any site for the management of surface water run-off from a construction site, including access tracks which is greater than 4ha. As the development site area exceeds 4ha, a complex licence will be required.

5.7 Maintenance

5.7.1 Basic maintenance schedules for the proposed SuDS features are outlined below in **Table 5-4 to 5.8**.

Maintenance Requirements for Swale

Table 5-4 Maintenance Requirements for Swale

Operation	Frequency
Inspections to determine mowing requirements	Monthly
Litter removal	Monthly
Scarifying and spiking following inspection	As required
Repair damages vegetation following inspection	As required.
Inspect inlets, outlets and overflows for blockages, and clear if required	Monthly
Inspect infiltration surfaces for ponding, compaction, silt accumulation, record areas where water is ponding for >48 hours	Monthly, or when required
Inspect vegetation coverage	Monthly for 6 months, quarterly for 2 years, then half yearly
Inspect inlets and facility surface for silt accumulation, establish appropriate silt removal frequencies	Half yearly
Reseed areas of poor vegetation growth, alter plant types to better suit conditions, if required	As required or if bare soil is exposed over 10% or more of the swale treatment area
Repair erosion or other damage by re-turfing or reseeding	As required
Relevel uneven surfaces and reinstate design levels	As required
Scarify and spike topsoil layer to improve infiltration performance, break up silt deposits and prevent compaction of the soil surface	As required
Remove build-up of sediment on upstream gravel trench, flow spreader or at top of filter strip	As required
Remove and dispose of oils or petrol residues using safe standard practices	As required

Maintenance Requirements for Permeable Paving

Table 5-5 Maintenance Requirements for Permeable Paving

Operation	Frequency
Brushing and vacuuming	Once a year, after autumn leaf fall, or reduced frequency as required, based on site-specific observations of clogging or manufacturer's recommendations – pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this area is most likely to collect the most sediment.
Stabilise and mow contributing and adjacent areas	As required
Removal of weeds or management using glyphosate applied directly into the weeds by an applicator rather than spraying	As required – once per year on less frequently used pavements
Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50mm of the level of the paving	As required
Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material	As required
Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)
Initial inspection	Monthly for three months after installation
Inspect for evidence of poor operation and/or weed growth – if required, take remedial action	Three-monthly, 48h after large storms in first six months
Inspect silt accumulation rates and establish appropriate brushing frequencies	Annually
Monitor inspection chambers	Annually

Maintenance Requirements for Detention Basin

Table 5-6 Maintenance Requirements for Detention Basins

Operation	Frequency
Remove litter and debris	Monthly
Cut grass - for spillways and access routes	Monthly (during growing season), or as required
Cut grass - meadow grass in and around basin	Half yearly
Manage other vegetation and remove nuisance plants	Monthly (at start, then as required)
Inspect inlets, outlets and overflows for blockages, and clear if required	Monthly
Inspect banksides, structures, pipework etc for evidence of physical damage	Monthly
Inspect inlets and facility surface for silt accumulation. Establish appropriate silt removal frequencies	Monthly (for first year), then annually or as required
Check any penstock and other mechanical devices	Annually
Tidy all dead growth before start of growing season	Annually
Remove sediment from inlets, outlet and forebay	Annually (or as required)

Operation	Frequency
Manage wetland plants in outlet pool - where provided	Annually
Reseed areas of poor vegetation growth	As required
Prune and trim any trees and remove cuttings	Every 2 years, or as required
Remove sediment from inlets, outlets, forebay and main basin when required	Every 5 years, or as required (likely to be minimal requirements where effective upstream source control is provided
Repair erosion or other damage by reseeding or re-turfing	As required
Realignment of rip-rap	As required
Manage wetland plants in outlet pool - where provided	Annually
Reseed areas of poor vegetation growth	As required
Prune and trim any trees and remove cuttings	Every 2 years, or as required

Maintenance Requirements for Pond/Wetland

Table 5-7 Maintenance Requirements for Pond/Wetland

Operation	Frequency
Remove litter and debris	Monthly
Cut grass – public areas	Monthly (during growing season), or as required
Cut meadow grass	Half yearly
Inspect marginal and bankside vegetation and remove nuisance plants (for first 3 years)	Monthly (at start, then as required)
Inspect inlets, outlets, banksides, structures, pipework etc for evidence of blockages/physical damage	Monthly
Inspect water body for signs of poor water quality	Monthly (May – October)
Inspect silt accumulation rates in any forebay and main body of the pond and establish appropriate removal frequencies; undertake contamination testing once some build-up has occurred, to inform management and disposal options.	Half yearly
Check any penstock and other mechanical devices	Half yearly
Hand cut submerged and emergent aquatic plans (at minimum 0.1m above pond base; include max 25% of pond surface)	Annually
Remove 25% of bank vegetation from waters edge to minimum of 1m above water level	Annually
Tidy all dead growth before start of growing season	Annually
Remove sediment from any forebay	Every 1-5 years, or as required
Remove sediment and planting from one quadrant of the main body of ponds without sediment forebays	Every 5 years, or as required.
Remove sediment from the main body of big ponds when pool volume is reduced by 20%	With effective pre-treatment, this will only be required rarely, e.g., every 25-50 years
Repair erosion or other damage	As required
Realignment of riprap or other damage	As required
Repair / rehabilitate inlets, outlets and overflows	As required
Aerate pond when signs of eutrophication are detected	As required

Operation	Frequency	
Replant, where necessary	As required	

Maintenance Requirements for Filter Drain

Table 5-8 Maintenance Requirements for Filter Drain

Operation	Frequency
Remove litter and debris from filter drain surface, access chambers and pre-treatment devices.	Monthly (or as required)
Inspect filter drain surface, inlet/outlet pipework and control systems for blockages, clogging, standing water and structural damage	Monthly
Inspect pre-treatment systems, inlets and perforated pipework for silt accumulation, and establish appropriate silt removal frequencies	Six monthly
Remove sediment from pre-treatment devices	Six monthly, or as required
Remove or control tree roots where they are encroaching the sides of the filter drain, using recommended methods (NJUG, 2007 or BS 3998_2010)	As required
At locations with high pollution loads, remove surface geotextile and replace, and wash or replace overlying filter medium	Five yearly, or as required
Clear perforated pipework of blockages	As required
Check any penstock and other mechanical devices	Half yearly

6 Conclusions

- 6.1.1 The foul and surface water drainage layout and design should follow current design guidance in Sewers for Scotland 4th Edition, current British Standards and code of practice.
- 6.1.2 The Woodbank, and Drumkinnon Wood sections of the site can be drained under gravity and it is proposed that the foul sewers would connect into Scottish Water's existing combined sewers on Old Luss Road and Pier Road respectively. The riverfront section of the site presents a challenge for foul drainage as this area is extremely flat. As a gravity-based system is unlikely to be a practical solution for connecting into the existing combined sewer network, it would be necessary to install a pumping station in the riverfront section of the site. A gravity sewer would capture foul drainage from the Riverfront and Pierhead areas of the site and direct it to the pumping station. This would pump the wastewater up a rising main to a connecting manhole on the existing combined sewer network at Balloch Road.
- 6.1.3 Peak foul water discharge from the site has been calculated at a rate of **7.541I/s** based on an assessment of foul flows using current information available in an Accommodation Schedule for the development, as well as flow data presented in the British Water Code of Practice Flows and Loads 4 Sizing Criteria, Treatment Capacity for Sewage Treatment Systems, and Sewers for Scotland 4th Edition.
- 6.1.4 The proposed surface water drainage network servicing the proposed development will comprise of a gravity closed pipe network, draining surface water runoff from roofs and other impermeable areas (such as roads, car parking and hardstanding) to the SuDS treatment and attenuation features detailed in this report (permeable paving, filter drain, swales, detention basin/pond).
- 6.1.5 The surface water flow will discharge to the River Leven at a discharge rate equivalent to greenfield runoff, with attenuation and treatment volume managed within the SuDS features and the drainage network provided.
- 6.1.6 Greenfield runoff rates were calculated for the 2-, 30-, 100- and 200-year return period events for both the West Riverside and Woodbank areas. Based on these calculations it was found that the attenuation required for the 200 year + 55% climate change event was **847.1m**³ and **436.5m**³ for each area respectively.
- 6.1.7 SuDS should be designed in accordance with CIRIA C753 The SuDS Manual. In accordance with current guidance, the Simple Index Approach was used. This stipulates that the "total pollution mitigation index" should equal or exceed the "pollution hazard index". The required treatment to satisfy this relationship varied by each land use area and included the following SuDS features: filter drain, under-drained swale, pond/wetland and permeable paving.
- 6.1.8 The treatment volume is calculated to be **514.4m**³ and **632.5m**³ for the proposed development at Woodbank and West Riverside, respectively. This will be accommodated within the proposed SuDS described above.
- 6.1.9 Overland flow analysis should be undertaken at detailed design stage using level analysis of proposed finished levels on site to determine where overland flows would be routed in extreme flood events when the pipe and manhole capacities within the network have been exceeded. This analysis should conclude that proposed buildings are not at risk of flooding during extreme events and overland flows route to receiving watercourses.

Appendix A Correspondance with Relevent Authorities

Doidge, Aaron

From:	Planning SW <planning.sw@sepa.org.uk></planning.sw@sepa.org.uk>
Sent:	Thursday, March 24, 2022 5:30 PM
То:	MacColl, Scott
Subject:	Automatic reply: Request for Information - West Riverside and Woodbank House (Lomond Banks)

We confirm receipt of your email and if you have requested a response we will respond to you as soon as we can. Please note that we may take longer to respond to your email than usual. If you wish to make an environmental data or freedom of information request

please follow the advice on our webpage, https://www.sepa.org.uk/about-us/access-to-information/

Kind regards,

Planning Service South West

SEPA

Information on our planning service along with guidance for planning authorities, developers and any other interested parties is available on our website at https://www.sepa.org.uk/environment/land/planning/

Doidge, Aaron

From:	DevelopmentOperations < DevelopmentOperations@scottishwater.co.uk >
Sent:	Thursday, March 24, 2022 5:30 PM
То:	MacColl, Scott
Subject:	RE: Request for Information - West Riverside and Woodbank House (Lomond Banks)

Thank you for contacting Scottish Water, Development Operations.

We have received your e-mail, and will assess this and route to the appropriate case owner/ team to action accordingly. If we have any further questions, we will contact you directly.

...

Did you know that we have a Customer Applications Portal where you can submit applications, track progress, details of your Scottish Water case owner, upload documents, pay invoices and also request pre-start meetings which is connected to our new IT system. You can visit this at www.scottishwater.co.uk/portal

Once you have an account on our portal you can then access our 'Dev Services' Remote Inspection App to submit remote inspections, by downloading from the Google Play Store / Apple App Store.

Please send any written correspondence to the following address:

Please note: Due to the current COVID-19 situation we currently have very limited access to the office therefore there will be a delay in us responding to written correspondence.

Scottish Water Development Operations The Bridge Buchanan Gate Business Park Cumbernauld Road Stepps Glasgow G33 6FB

Central contact number: 0800 389 0379

Web: www.scottishwater.co.uk/portal

"

Privileged/Confidential information may be contained in this Email and any files transmitted with it. If you are not the intended recipient you should not retain, copy or use this Email for any purpose or disclose all or part of its contents to any person. If you have received this Email in error please notify the sender immediately and delete this Email from your system.

Opinions, conclusions and other information in this message that do not relate to the official business of Scottish Water ("SW"), Scottish Water Horizons Ltd ("SWH"),Scottish Water International Ltd ("SWI") or Scottish Water Solutions 2 Ltd ("SWS2") shall be understood as neither given nor endorsed by them. The contents of Emails sent and received by SW, SWH, SWI and SWS2 are monitored.

WARNING: Although SW, SWH, SWI and SWS2 have taken reasonable precautions to ensure no viruses or other malicious software are present, SW, SWH, SWI and SWS2 cannot accept responsibility for any loss or damage arising from the use of this Email or attachments however caused. The recipient should therefore check this Email and any attachments for the presence of viruses or other malicious software.

Scottish Water

www.scottishwater.co.uk

From: Sent:	DevelopmentOperations <developmentoperations@scottishwater.co.uk> Friday, March 25, 2022 1:05 PM</developmentoperations@scottishwater.co.uk>
То:	MacColl, Scott; info@lochlomond-trossachs.org; Planning.sw@sepa.org.uk; roads@west- dunbarton.gov.uk
Cc:	Warren, David
Subject:	RE: Request for Information - West Riverside and Woodbank House (Lomond Banks)
Follow Up Flag:	Follow up
Flag Status:	Flagged

Good Afternoon,

Many thanks for your email below.

In regards to the flooding queries below you would be required to contact <u>FloodingTeam@Scottishwater.co.uk</u> to discuss or obtain this information.

In regards to the layout of existing infrastructure you must contact Site investigation Services to obtain plans: **Site Investigation Services (UK) Ltd.** Tel: 0333 123 1223 Email: <u>plans@siteinvest.co.uk</u> Web: www.sisplan.co.uk

- Records of historical flooding in the area from all sources; flooding team
- Existing flood defences in the vicinity of the development site; flooding team
- Layouts of existing sewers and other services; Site Investigation Services (UK) Ltd.
- Records of land contamination; This is customer/developer responsibility to investigate
- Discharge rate requirements from site This is site dependant and normally greenfield runoff
- Design standards any local specific guidance for drainage and flood risk? If not, best practice guidance will be assumed (E.g. Sewers for Scotland 4, CIRIA SuDS Manual) Guidance assumed Sewers for Scotland.
- Any other relevant information

Kind Regards,

Lisa Lennox

Customer Connections Team Leader

Development Operations Department

Scottish Water, The Bridge, Buchanan Gate Business Park, Cumbernauld Road, Stepps, Glasgow, G33 6FB **Dedicated Freephone Helpline** : 0800 389 0379

Managed email Service: <u>DevelopmentOperations@scottishwater.co.uk</u>

Business Weblink: <u>https://www.scottishwater.co.uk/Business-and-Developers/NEW-Connecting-to-Our-Network</u> Scottish Water

Trusted to serve Scotland

------ Original Message ------

From: scott.maccoll@stantec.com;

Received: Thu Mar 24 2022 17:30:03 GMT+0000 (Greenwich Mean Time)

To: Scottish Water <developmentoperations@scottishwater.co.uk>; Dev Ops Outbound Email Queue <developmentoperations@scottishwater.co.uk>; info@lochlomond-trossachs.org; Planning.sw@sepa.org.uk; roads@west-dunbarton.gov.uk;

Cc: David Warren <david.warren@stantec.com>;

Subject: Request for Information - West Riverside and Woodbank House (Lomond Banks)

EXTERNAL MAIL - Think Before You Click

Good afternoon,

Stantec have been commissioned to undertake a Flood Risk Assessment and Drainage Strategy as part of a EIA to support an application for planning permission in principle for the erection and operation of a proposed tourism and leisure-led mixed use development on land at West Riverside and Woodbank House, Balloch. Site location plan shown below for context.

I would be grateful if you could assist us on this by providing any information held or any thoughts on any of the following:

- Records of historical flooding in the area from all sources;
- Existing flood defences in the vicinity of the development site;
- Layouts of existing sewers and other services;
- Records of land contamination;
- Discharge rate requirements from site
- Design standards any local specific guidance for drainage and flood risk? If not, best practice guidance will be assumed (E.g. Sewers for Scotland 4, CIRIA SuDS Manual)
- Any other relevant information

If I have used the wrong email address I would be much obliged if you could forward to your relevant team please. Many thanks in advance.

Kind regards,

Scott MacColl Senior Engineer CEng MICE 3rd Floor, Randolph House Edinburgh, EH2 4QZ Direct: +44 131 2859 327 scott.maccoll@stantec.com

f y 🗖 🖸 🖸

Better Together, Even If We're Apart. <u>Read more</u> about Stantec's COVID-19 response, including remote working and business continuity measures.

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

Disclaimer: The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately. This communication may come from a variety of legal entities within or associated with the Stantec group. For a full list of details for these entities please see our website at www.stantec.com. Where business communications relate to the Stantec UK Limited entity, the registered office is Kingsmead Business Park, London Road, High Wycombe, Buckinghamshire HP11 1JU Tel: 01494 526240 and the company is registered in England as registration number 01188070.

Privileged/Confidential information may be contained in this Email and any files transmitted with it. If you are not the intended recipient you should not retain, copy or use this Email for any purpose or disclose all or part of its contents to any person. If you have received this Email in error please notify the sender immediately and delete this Email from your system.

Opinions, conclusions and other information in this message that do not relate to the official business of Scottish Water ("SW"), Scottish Water Horizons Ltd ("SWH"),Scottish Water International Ltd ("SWI") or Scottish Water Solutions 2 Ltd ("SWS2") shall be understood as neither given nor endorsed by them. The contents of Emails sent and received by SW, SWH, SWI and SWS2 are monitored.

WARNING: Although SW, SWH, SWI and SWS2 have taken reasonable precautions to ensure no viruses or other malicious software are present, SW, SWH, SWI and SWS2 cannot accept responsibility for any loss or damage arising from the use of this Email or attachments however caused. The recipient should therefore check this Email and any attachments for the presence of viruses or other malicious software.

Scottish Water

www.scottishwater.co.uk

From:	Planning SW <planning.sw@sepa.org.uk></planning.sw@sepa.org.uk>
Sent:	Friday, March 25, 2022 2:05 PM
To:	MacColl, Scott
Subject:	RE: Request for Information - West Riverside and Woodbank House (Lomond Banks)
Follow Up Flag:	Follow up

Flag Status: Flagged

OFFICIAL

Scott,

I have forwarded your email so that it can be logged as a data request with our Flood Risk team. They will respond to the first two our bullet points below in due course. With regards to records of land contamination I recommend that you contact the Contaminated Land officer at West Dunbartonshire Council in the first instance.

Kind Regards,

Jonathan

Jonathan Werritty Senior Planning Officer / Planning Officer - SW Team Scottish Environment Protection Agency | Silvan House | 231 Corstorphine Road | Edinburgh | EH12 7AT

Disclaimer

The information contained in this email and any attachments may be confidential and is intended solely for the use of the intended recipients.

Access, copying and re-use of the information in it by any other is not authorised, If you are not the intended recipient please notify us immediately by return email at <u>postmaster@sepa.org.uk</u>.

Registered office: Strathallan House, Castle Business Park, Stirling, FK9 4TZ. Under the Regulation of Investigatory Powers Act 2000, the email system at SEPA may be subject to monitoring from time to time.

From: MacColl, Scott <scott.maccoll@stantec.com>
Sent: 24 March 2022 17:30
To: roads@west-dunbarton.gov.uk; Planning SW <planning.sw@sepa.org.uk>; info@lochlomond-trossachs.org;
DevelopmentOperations <developmentoperations@scottishwater.co.uk>
Cc: Warren, David <david.warren@stantec.com>
Subject: Request for Information - West Riverside and Woodbank House (Lomond Banks)

CAUTION: This email originated from outside the organisation. Do not click links or open attachments unless you recognise the sender and know the content is safe.

Good afternoon,

Stantec have been commissioned to undertake a Flood Risk Assessment and Drainage Strategy as part of a EIA to support an application for planning permission in principle for the erection and operation of a proposed tourism and

leisure-led mixed use development on land at West Riverside and Woodbank House, Balloch. Site location plan shown below for context.

-

I would be grateful if you could assist us on this by providing any information held or any thoughts on any of the following:

- Records of historical flooding in the area from all sources;
- Existing flood defences in the vicinity of the development site;
- · Layouts of existing sewers and other services;
- Records of land contamination;
- Discharge rate requirements from site
- Design standards any local specific guidance for drainage and flood risk? If not, best practice guidance will be assumed (E.g. Sewers for Scotland 4, CIRIA SuDS Manual)
- Any other relevant information

If I have used the wrong email address I would be much obliged if you could forward to your relevant team please. Many thanks in advance.

Kind regards,

Scott MacColl

Senior Engineer CEng MICE 3rd Floor, Randolph House Edinburgh, EH2 4QZ Direct: +44 131 2859 327 scott.maccoll@stantec.com

Better Together, Even If We're Apart. <u>Read more</u> about Stantec's COVID-19 response, including remote working and business continuity measures.

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

Disclaimer: The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately. This communication may come from a variety of legal entities within or associated with the Stantec group. For a full list of details for these entities please see our website at <u>www.stantec.com</u>. Where business communications relate to the Stantec UK Limited entity, the registered office is Kingsmead Business Park, London Road, High Wycombe, Buckinghamshire HP11 1JU Tel: 01494 526240 and the company is registered in England as registration number 01188070.

From: Sent: To: Cc: Subject:	Caroline Strugnell <caroline.strugnell@lochlomond-trossachs.org> Monday, March 28, 2022 5:04 PM MacColl, Scott Samantha Stubbs; Laura Baird; Bob Cook; Johnston, Mark (Glasgow) Re: Request for Information - West Riverside and Woodbank House (Lomond Banks) - advice requested please</caroline.strugnell@lochlomond-trossachs.org>
Follow Up Flag:	Follow up
Flag Status:	Flagged

Dear Scott

I refer to your enquiry below which has been passed to me for response. The National Park Authority does not hold the information requested.

The only documentation we have of relevance is the design guidance on SUDS contained within our <u>Design</u> <u>and Placemaking Supplementary Planning Guidance</u> which supports Natural Environment Policies 12 and 13 of our Local Development Plan.

Mark - you may also recall the complaint regarding the overflowing of the sewers in the vicinity of Sweenies Cruises which may be of relevance to this enquiry. I believe I forwarded you the correspondence a while back but do let me know if you wish me to dig it out and resend it.

Regards Caroline

Caroline Strugnell MRTPI Development Management Planner

Loch Lomond & The Trossachs National Park Direct: 01389 722148 www.lochlomond-trossachs.org

In line with current guidance on the Covid-19 / Coronavirus pandemic, I am working remotely. My working hours are 8.30am to 16:30pm. You can best contact me via 01389 722148 or <u>caroline.strugnell@lochlomond-trossachs.org</u> National Park Authority staff can reach me via Teams.

For more information about our planning services at this time, please visit <u>https://www.lochlomond-</u> <u>trossachs.org/planning/coronavirus-covid-19-planning-services/</u>. Information on how to respect, protect and enjoy the National Park can be found in our latest <u>advice to visitors</u>.

From: MacColl, Scott <<u>scott.maccoll@stantec.com</u>> Sent: 24 March 2022 17:30 To: roads@west-dunbarton.gov.uk; Planning.sw@sepa.org.uk; infomailbox <infomailbox@lochlomond-trossachs.org>; DevelopmentOperations <developmentoperations@scottishwater.co.uk>
 Cc: Warren, David <david.warren@stantec.com>
 Subject: Request for Information - West Riverside and Woodbank House (Lomond Banks)

Good afternoon,

Stantec have been commissioned to undertake a Flood Risk Assessment and Drainage Strategy as part of a EIA to support an application for planning permission in principle for the erection and operation of a proposed tourism and leisure-led mixed use development on land at West Riverside and Woodbank House, Balloch. Site location plan shown below for context.

I would be grateful if you could assist us on this by providing any information held or any thoughts on any of the following:

- Records of historical flooding in the area from all sources;
- Existing flood defences in the vicinity of the development site;
- · Layouts of existing sewers and other services;
- Records of land contamination;
- Discharge rate requirements from site
- Design standards any local specific guidance for drainage and flood risk? If not, best practice guidance will be assumed (E.g. Sewers for Scotland 4, CIRIA SuDS Manual)
- Any other relevant information

If I have used the wrong email address I would be much obliged if you could forward to your relevant team please. Many thanks in advance.

Kind regards,

Scott MacColl

Senior Engineer CEng MICE 3rd Floor, Randolph House Edinburgh, EH2 4QZ Direct: +44 131 2859 327 scott.maccoll@stantec.com

Better Together, Even If We're Apart. <u>Read more</u> about Stantec's COVID-19 response, including remote working and business continuity measures.

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

Disclaimer: The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately. This communication may come from a variety of legal entities within or associated with the Stantec group. For a full list of details for these entities please see our website at <u>www.stantec.com</u>. Where business communications relate to the Stantec UK Limited entity, the registered office is Kingsmead Business Park, London Road, High Wycombe, Buckinghamshire HP11 1JU Tel: 01494 526240 and the company is registered in England as registration number 01188070.

The content of this email and any attachments is confidential and is subject to the terms of the National Park Authority's email disclaimer at <u>https://www.lochlomond-trossachs.org/disclaimer</u> and is intended only for the use of the individual or entity to which it is addressed.

From:	lain Hastings <lan.hastings@west-dunbarton.gov.uk></lan.hastings@west-dunbarton.gov.uk>		
Sent:	Thursday, March 31, 2022 3:56 PM		
То:	MacColl, Scott		
Cc:	Raymond Walsh		
Subject:	FW: Request for Information - West Riverside and Woodbank House (Lomond Banks)		

Afternoon Scott,

We get flooding on Old Luss Road just at the site boundary due to it being the low flat spot in the area. Source of flooding is the road drainage being blocked by leaves & usual happens in the autumn time. The flooding is usual between 100-200mm & the road remains fully open.

There was a flood event on Old Luss Road at its junction with Lower Stoneymollan Road after storm Desmond & Frank of winter 2014/2015. The combination of the road drainage not coping with the run off, the water course overtopped as it leaves the holiday park under Lower Stoneymollan Road & the combined sewer was surcharging at the location at the same time resulted in the area flooding & 2 properties being affected. Scottish Water did survey the combined system & discovered the sewer had a blockage within it at the time. Since they have removed the blockage & installed non return valves at the properties affect there has been not flooding at this location since.

There are no existing flood defences within the vicinity of the proposed development site.

Discharge rate would be site specific/standard greenfield run off.

SUDS manual for roads for design standards.

Any further question with regards to flooding don't hesitate to get in touch.

Regards

lain

Iain Hastings Technical Assistant Flood Risk Management Roads & Transportation West Dunbartonshire Council Bridge Street Office Dumbarton G82 1NT

Cc: David Warren <<u>david.warren@stantec.com</u>>;

Subject: Request for Information - West Riverside and Woodbank House (Lomond Banks)

EXTERNAL MAIL - Think Before You Click

Good afternoon,

Stantec have been commissioned to undertake a Flood Risk Assessment and Drainage Strategy as part of a EIA to support an application for planning permission in principle for the erection and operation of a proposed tourism and leisure-led mixed use development on land at West Riverside and Woodbank House, Balloch. Site location plan shown below for context.

I would be grateful if you could assist us on this by providing any information held or any thoughts on any of the following:

- Records of historical flooding in the area from all sources;
- Existing flood defences in the vicinity of the development site;
- Layouts of existing sewers and other services;
- Records of land contamination;
- Discharge rate requirements from site
- Design standards any local specific guidance for drainage and flood risk? If not, best practice guidance will be assumed (E.g. Sewers for Scotland 4, CIRIA SuDS Manual)
- Any other relevant information

If I have used the wrong email address I would be much obliged if you could forward to your relevant team please. Many thanks in advance.

Kind regards,

Scott MacColl

Senior Engineer CEng MICE 3rd Floor, Randolph House Edinburgh, EH2 4QZ Direct: +44 131 2859 327 scott.maccoll@stantec.com

Better Together, Even If We're Apart. <u>Read more</u> about Stantec's COVID-19 response, including remote working and business continuity measures.

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

Disclaimer: The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately. This communication may come from a variety of legal entities within or associated with the Stantec group. For a full list of details for these entities please see our website at <u>www.stantec.com</u>. Where business communications relate to the Stantec UK Limited entity, the registered office is Kingsmead Business Park, London Road, High Wycombe, Buckinghamshire HP11 1JU Tel: 01494 526240 and the company is registered in England as registration number 01188070.

Privileged/Confidential information may be contained in this Email and any files transmitted with it. If you are not the intended recipient you should not retain, copy or use this Email for any purpose or disclose all or part of its contents to any person. If you have received this Email in error please notify the sender immediately and delete this Email from your system.

Opinions, conclusions and other information in this message that do not relate to the official business of Scottish Water ("SW"), Scottish Water Horizons Ltd ("SWH"),Scottish Water International Ltd ("SWI") or Scottish Water Solutions 2 Ltd ("SWS2") shall be understood as neither given nor endorsed by them. The contents of Emails sent and received by SW, SWH, SWI and SWS2 are monitored.

WARNING: Although SW, SWH, SWI and SWS2 have taken reasonable precautions to ensure no viruses or other malicious software are present, SW, SWH, SWI and SWS2 cannot accept responsibility for any loss or damage arising from the use of this Email or attachments however caused. The recipient should therefore check this Email and any attachments for the presence of viruses or other malicious software.

Scottish Water

www.scottishwater.co.uk

The information contained in this message is confidential and is intended for the addressee only. If you have received this message in error or there are any problems please notify the originator immediately at - systems.manager@west-

dunbarton.gov.uk The unauthorised use, disclosure, copying or alteration of this message is strictly forbidden. West Dunbartonshire Council will not be liable for direct, special, indirect or consequential damages arising from alteration of the contents of this message by a third party or as a result of any virus being passed on. Unless expressly stated to the contrary, this email and its contents shall not have any contractually binding effect on West Dunbartonshire Council or its clients and any writings which are or could form the basis of any agreement are subject to contract.

From:	FOI <foi@scottishwater.co.uk></foi@scottishwater.co.uk>
Sent:	Wednesday, April 6, 2022 8:16 AM
То:	MacColl, Scott
Subject:	Freedom of Information Request - CAS-1821912-N6M5T CRM:068300000794

Dear MacColl,

Thank you for your request for information which we received from the Flooding Investigation Team yesterday.

I can confirm that I have logged your request under the above reference number and we will respond to your request in accordance with the EIRs by 05/05/2022.

We will endeavour to get a response to you as soon as we can.

If you have any queries regarding your FOI request please feel free to contact me quoting the above reference number, and I will be happy to assist.

Yours sincerely, Andrew Ross | FOI Officer Scottish Water Phone : 01414830897

Privileged/Confidential information may be contained in this Email and any files transmitted with it. If you are not the intended recipient you should not retain, copy or use this Email for any purpose or disclose all or part of its contents to any person. If you have received this Email in error please notify the sender immediately and delete this Email from your system.

Opinions, conclusions and other information in this message that do not relate to the official business of Scottish Water ("SW"), Scottish Water Horizons Ltd ("SWH"),Scottish Water International Ltd ("SWI") or Scottish Water Solutions 2 Ltd ("SWS2") shall be understood as neither given nor endorsed by them. The contents of Emails sent and received by SW, SWH, SWI and SWS2 are monitored.

WARNING: Although SW, SWH, SWI and SWS2 have taken reasonable precautions to ensure no viruses or other malicious software are present, SW, SWH, SWI and SWS2 cannot accept responsibility for any loss or damage arising from the use of this Email or attachments however caused. The recipient should therefore check this Email and any attachments for the presence of viruses or other malicious software.

Scottish Water

www.scottishwater.co.uk

From:	FRAM <fram@sepa.org.uk></fram@sepa.org.uk>		
Sent:	Thursday, April 14, 2022 11:22 AM		
То:	MacColl, Scott		
Subject:	RE: Request for Information - West Riverside and Woodbank House (Lomond Banks)		

PUBLIC

Good Morning Scott,

Thank you for your enquiry which has been forwarded to me by the SEPA Contact team. As you may be aware SEPA is recovering from a significant cyber-attack which has had a major impact on the way we work. You can find out the latest status of our service through the following link: <u>https://regulatoryapproach.sepa.org.uk/cyber-attack-service-status/</u> This is updated weekly.

We currently have approximately 11 records of flooding affecting your site of interest. These occur at various dates between January 2005 and February 2020. The records generally relate to fluvial flooding from the River Leven or Loch Lomond, but also note there are several pluvial records. A number of records relate to a specific event in January 2005 that highlight flooding to public toilets and footpaths from the River Leven. Within this event, a record notes overtopping of the left bank of the River Leven alongside a number of streets, but no specific details are provided. Similarly, an event in February 2020 has a few records that relate to flooding along Stirling Road and Balloch Road.

The Observed Flood Event database is a collection of flood event records known to SEPA at this time and does not constitute a complete record of all flooding that may have occurred in the area. We are also unable to provide any data on flood events that may have occurred since December 2020 due to a cyber-attack which has significantly impacted our internal systems.

Unfortunately, SEPA was subject to a cyber-attack which has significantly impacted our internal systems. Due to this we are unable to provide any information on past flood events for Scotland or other large areas. We are still able to respond to local requests / enquires for small areas but do not have access to the same level of information we previously held or any data on flood events that may have occurred since December 2020.

We do not have any records of any flood defences in the area of interest. However, it is recommended that you get in touch with the Flood Risk Management Authority, West Dunbartonshire Council, for any records of flood defences they may have.

I hope this is of use.

Regards,

Ross

Ross Garland | Scientist Flood Risk Modelling Team Hydrology & Flooding From: MacColl, Scott <<u>scott.maccoll@stantec.com</u>>
Sent: 24 March 2022 17:30
To: roads@west-dunbarton.gov.uk; Planning SW <<u>planning.sw@sepa.org.uk</u>>; info@lochlomond-trossachs.org;
DevelopmentOperations <<u>developmentoperations@scottishwater.co.uk</u>>
Cc: Warren, David <<u>david.warren@stantec.com</u>>
Subject: Request for Information - West Riverside and Woodbank House (Lomond Banks)

CAUTION: This email originated from outside the organisation. Do not click links or open attachments unless you recognise the sender and know the content is safe.

Good afternoon,

Stantec have been commissioned to undertake a Flood Risk Assessment and Drainage Strategy as part of a EIA to support an application for planning permission in principle for the erection and operation of a proposed tourism and leisure-led mixed use development on land at West Riverside and Woodbank House, Balloch. Site location plan shown below for context.

I would be grateful if you could assist us on this by providing any information held or any thoughts on any of the following:

- Records of historical flooding in the area from all sources;
- Existing flood defences in the vicinity of the development site;
- Layouts of existing sewers and other services;
- Records of land contamination;
- Discharge rate requirements from site
- Design standards any local specific guidance for drainage and flood risk? If not, best practice guidance will be assumed (E.g. Sewers for Scotland 4, CIRIA SuDS Manual)
- Any other relevant information

If I have used the wrong email address I would be much obliged if you could forward to your relevant team please. Many thanks in advance.

Kind regards,

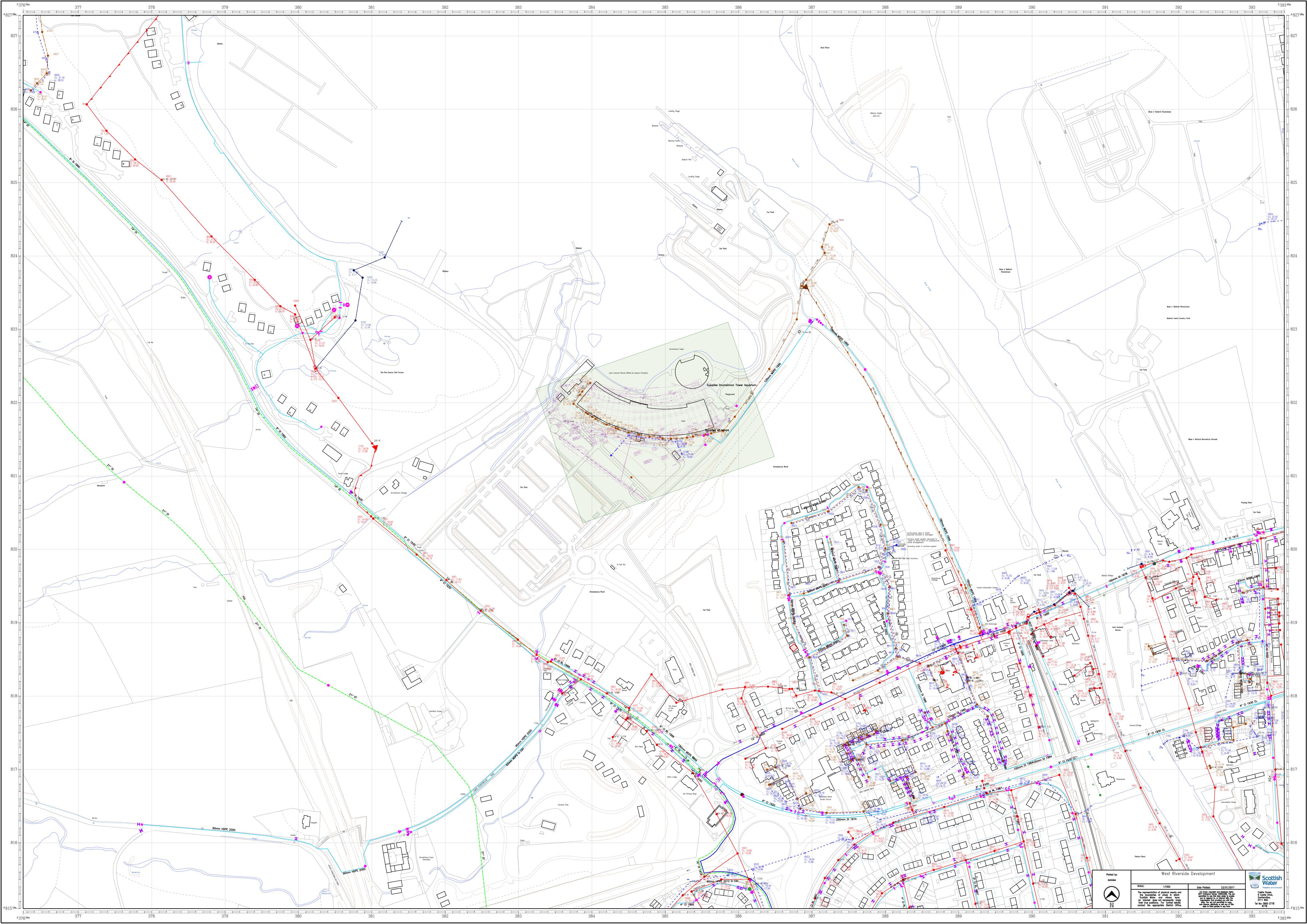
Scott MacColl Senior Engineer CEng MICE 3rd Floor, Randolph House Edinburgh, EH2 4QZ Direct: +44 131 2859 327 scott.maccoll@stantec.com

Better Together, Even If We're Apart. <u>Read more</u> about Stantec's COVID-19 response, including remote working and business continuity measures.

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

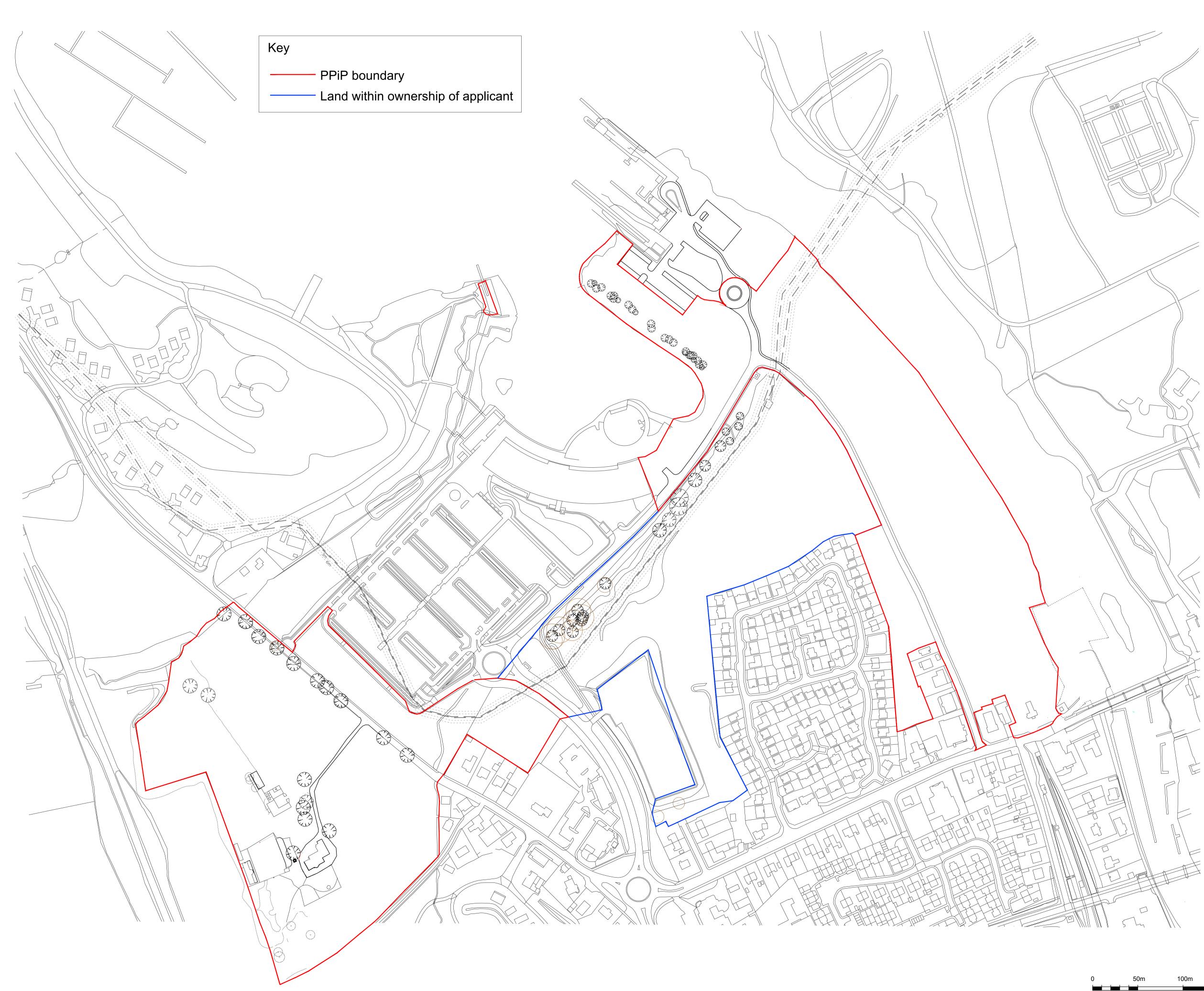
Please consider the environment before printing this email.

Disclaimer: The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately. This communication may come from a variety of legal entities within or associated with the Stantec group. For a full list of details for these entities please see our website at <u>www.stantec.com</u>. Where business communications relate to the Stantec UK Limited entity, the registered office is Kingsmead Business Park, London Road, High Wycombe, Buckinghamshire HP11 1JU Tel: 01494 526240 and the company is registered in England as registration number 01188070.


PUBLIC

PUBLIC

PUBLIC



Appendix B Scottish Water Asset Plan

Appendix C Site Location Plan

0 When printing from PDF this line should measure 50mm

	1		
No.	Date	RISK REGISTER Description	
NO"	TES		
The Sev	ver Inverts at	must check & verify all Site & Building Dimensions	
The Sev This rela CO I The	e Contractor i ver Inverts at s Drawing mi ted Structura PYRIGHT : e information	must check & verify all Site & Building Dimensions IDCM's before commencing work. ust be read with the NBS Contract Specification and al Engineer or Specialist Contractors Drawings.	nd any f anderson
The Sev This rela CO I The bell And	e Contractor i ver Inverts at s Drawing mi ted Structura PYRIGHT : e information	must check & verify all Site & Building Dimensions IDCM's before commencing work. ust be read with the NBS Contract Specification ai al Engineer or Specialist Contractors Drawings. I contained on this drawing is the sole copyright of may not be reproduced without express written pe thrisitie Architect's License number for copy or dis	nd any f anderson
The Sew This rela CO I The bell And Data	Contractor i ver Inverts at s Drawing mi ted Structura PYRIGHT : informatior + christie & lerson Bell C a is LIG0388	must check & verify all Site & Building Dimensions IDCM's before commencing work. ust be read with the NBS Contract Specification at al Engineer or Specialist Contractors Drawings. In contained on this drawing is the sole copyright of may not be reproduced without express written pe chrisitie Architect's License number for copy or dis	nd any f anderson
The Sev This rela COI The bell And Data	e Contractor i ver Inverts al s Drawing mi ted Structura PYRIGHT: e information + christie & lerson Bell C a is LIG0388	must check & verify all Site & Building Dimensions IDCM's before commencing work. ust be read with the NBS Contract Specification and al Engineer or Specialist Contractors Drawings. In contained on this drawing is the sole copyright of may not be reproduced without express written per thrisitie Architect's License number for copy or dis 5.	nd any f anderson
The Sew This rela COI The bell And Data	e Contractor I ver Inverts ai s Drawing mi ted Structura PYRIGHT: + christie & derson Bell C a is LIG0388	must check & verify all Site & Building Dimensions IDCM's before commencing work. ust be read with the NBS Contract Specification at al Engineer or Specialist Contractors Drawings. In contained on this drawing is the sole copyright of may not be reproduced without express written pe chrisitie Architect's License number for copy or dis	nd any f anderson
The Sev This related to the Sev This related to the Sev This related to the Sev The Se	e Contractor ver Inverts al s Drawing ted Structura PYRIGHT: + christie & lerson Bell C a is LIG0388 et mond Bar e Location b BC-X	must check & verify all Site & Building Dimensions IDCM's before commencing work. ust be read with the NBS Contract Specification at al Engineer or Specialist Contractors Drawings. In contained on this drawing is the sole copyright of may not be reproduced without express written pe chrisitie Architect's License number for copy or dis	nd any f anderson
The Sew This relation of the Sew This relation of the Sew This relation of the Sew The	e Contractor ver Inverts al s Drawing mu ted Structura PYRIGHT: + christie & derson Bell C a is LIG0388 et mond Bar e Location e Location BC-X	must check & verify all Site & Building Dimensions IDCM's before commencing work. ust be read with the NBS Contract Specification and all Engineer or Specialist Contractors Drawings. In contained on this drawing is the sole copyright of may not be reproduced without express written per chrisitie Architect's License number for copy or dis the sole copy of the sole copy of the sole copy of the sole maximum set of the sole copy of the sole	nd any f anderson ermission. play of OS
The Sew This Sew This Sew This Sew This Sew The Sew Th	e Contractor ver Inverts al s brawing ted Structura PYRIGHT: + christie & lerson Bell C a is LIG0388 et mond Bar e Location BC-X ie. BC-X ie. 363	nust check & verify all Site & Building Dimensions DCM's before commencing work. ust be read with the NBS Contract Specification al al Engineer or Specialist Contractors Drawings. In contained on this drawing is the sole copyright of may not be reproduced without express written per thrisitie Architect's License number for copy or dis the sole copy of the sole copy of the sole copy of the sole maximum of the reproduced without express written per thrisitie Architect's License number for copy or dis the sole copy of the sole copy of th	nd any f anderson ermission. play of OS
The Several Several Color This Several Color This Several Color The bell And Data The bell And Data Color Client Flat Color Client Flat Color Site Color Several Client Cl	e Contractor ver Inverts al s Drawing ted Structura PYRIGHT: + christie & lerson Bell C a is LIG0388 et mond Bar e Location b BC-X ia. 363 journamento b BC-X ia. 363	nust check & verify all Site & Building Dimensions DCM's before commencing work. ust be read with the NBS Contract Specification at all Engineer or Specialist Contractors Drawings. u contained on this drawing is the sole copyright of may not be reproduced without express written pethrisitie Architect's License number for copy or dist. nks nhks wind n Plan	Rev. B Sheet
The Several Several Color This Several Color This Several Color The bell And Data The bell And Data Color Client Flat Color Client Flat Color Site Color Several Client Cl	e Contractor ver Inverts al s Drawing ted Structura PYRIGHT: + christie & lerson Bell C a is LIG0388 et mond Bar e Location b BC-X ia. 363 journamento b BC-X ia. 363	must check & verify all Site & Building Dimensions DCM's before commencing work. ust be read with the NBS Contract Specification and Engineer or Specialist Contractors Drawings. or contained on this drawing is the sole copyright of may not be reproduced without express written pertrisitie Architect's License number for copy or dist. nks nhks md Max Architect's License number for copy or dist. nks md n Plan X-XX-DR-A-00001 et Scale Date Checked 12/05/21 RS	Rev. B Sheet

Rev Date Notes

50m

Appendix D Development Accommodation Schedule

Draft development accommodation schedule

Station Square	Area	Notes	Building heights	
Refurbished Tourist Information	As existing	To incorporate Bike Hire, Flamingo Land ticketing /management, other commercial uses Base for temporary lodge registration as phased development progresses	As existing	
32 Bed Budget accommodation	To be determined - based on 64 bed spaces of which 24 are double bedrooms + 8 adjoining double rooms forming 4 family rooms	Budget accommodation for cyclists /walkers - 2 beds per room with ensuite - Access to other bar /restaurants at Station Sguare. - Similar type of accommodation to <u>www.bikeandboot.com</u>	12 m max height	
Craft Brewery & Visitor Centre	1200 sqm GIFA (single storey)	Working brewery based on dimensions previously agreed by ABC and Loch Lomond Brewery	ТВА	
Restaurant	150 sqm GIFA (two storey)	85 covers (1.5 sqm per cover incl kitchen, WCs etc.)	Max height 9m	
Enhanced public square	ТТО	To integrate with (a) Sustrans proposals – currently being managed by WDC (b) Sweeney Cruises improvements (refer to masterplan layout) 	n/a	
Performance Amphitheatre	400 sqm performance space (footprint) 200 sqm GIFA (support & storage)	Refer to ABC masterplan layout for location Outdoor theatre area with tented cover	Max height 8m	
Monorail Station	ТТО		At ground level	
Riverfront	Area	Notes	Building heights	
Forest Lodges	QTY LENGTH WIDTH M2 20 11.50 5.00 57.50 23 3.60 9.40 33.84	Access to lodges by buggy - remote parking Pumped sewerage Path network to include John Muir Way	Single storey dual pitch roo	
Picnic / BBQ; Playgrounds	ТТО	Part of the path network		
Monorail	As per masterplan drawing	Destinations confirmed as Station Square and Pierhead Hub	Max height of track 3.5 metres – rising to 5.5 metres above access road to pierhead - height to be confirmed	
Riverside Walkway	As per masterplan drawing	Woodland path outwith flooding zone at riverside May need to be part of the John Muir Way if required by LLTNP	n/a	

Drumkinnon Wood Staff & service area	Area	Notes	Building heights
Managed woodland	As existing	Existing paths upgraded Existing woodland retained and managed Retention and integration of Ineos pipeline infrastructure	
Staff & service area	700 sq metres (two storey)	Deliveries, storage, management, welfare, workshop & security uses	8m max height

Anderson Bell Christie | 1363 Lomond Banks | 09.03.2022

Notes					Area	Pierhead
Notes	Avg. StoreyHeight	Total Floor Area	Second Floor	First Floor	Ground Floor	(Rev E) Accommodation - Floor Areas
					(m2)	
					(=)	
						1. Apart Hotel (60 Bed)
60 Bed Apart Hotel - Apart hotel = studio rooms only, no reception, no restaurant etc	3m	<u>3065</u>	665	1200	1200	Floor Areas
						2. Water Park
						(incl staff areas)
Waterpark - Size based on 'The Splash Zone', Flamingoland - includes pool area, changing, plant and WCs. Sizes taken fro						
	3.5	<u>2428</u>	645	1225	1165	Floor Areas
						3. Reception & Atrium
Reception - Assumed facilitiesfor lodges, day guests, visitorsand Hotel Check-in						
	3.5	<u>915</u>	100	260	555	Floor Areas
						4.Mono-Rail Terminal & Attractions (incl staff areas)
Mono-Rail Terminal & Offices -Additional Attractions - Assumed indoor activities i.e. food & b						
	3.5	<u>2064</u>	900	840	840	Floor Areas
						5. Water Sports Hub -
						Boathouses
Water Sports Hub - Outdoor Activities requiring changing and storage	3.5	<u>250</u>	0	100	150	Floor Areas
	<u>m2</u>	<u>8722</u>	<u>2310</u>	<u>3625</u>	<u>3910</u>	Total Floor Area Per Floor (m2)

Woodbank	Area	Notes

romSplash Zone at Flamingo Land Yorkshire
-in.
beverage & retail

Building heights

Anderson Bell Christie | 1363 Lomond Banks | 09.03.2022

Lodges	37no Larger lodges in grazing land 30no smaller lodges and 17no bothies (pods) in woodland##					Within grazing land and area for smaller lodges - minimum path width 3.7 metres where access is needed for	Lodges - single storey dual
						emergency vehicles.	pitch roof
	ТҮРЕ	No	LENGTH	WIDTH	M2	Bothies (pods) accessed by foot only and have no services (shower blocks and kitchen facilities to be located within refurbished ancillary accommodation)	Ridge height 4.8m from existing ground level
	Bothies (pods)	17	5.00	4.00	20.00		shoung ground lover
	Woodland lodges 30 11.50 5.00		57.50		Bothies – single storey		
	Larger lodges (ardgarten) 22 15.00	15.00	00 8.00 120	120.00		monopitch roof, ridge height 3.5m from existing	
	Larger lodges (strathyre)	15	10.00	10.00	100.00		ground level
Woodbank House	15 new flats within Woodban 6 self catering properties with			6		Façade of Woodbank House retained, building converted into holiday apartments	As existing
Woodland planting						Location for compensatory planting	
Boathouse activity centre and storage for water based activities	95 sqm					Existing building footprint	Two storey houses with dual pitch roof Ridge height 9.3m from existing ground level

Anderson Bell Christie | 1363 Lomond Banks | 09.03.2022

ALL AREAS Infrastructure	Area	Notes	Building heights
SUDs/drainage	As per masterplan layout	Engineer has carried out a provisional assessment – incorporated into previous layout	
Ineos pipeline	N/A		
Pier Road	n/a	Assume Pier road open to traffic, with lower section adopted	
Monorail			3.5 m track height (rising to 5.1 metres at access road to Pierhead)
Compensatory woodland planting	Refer to page 6 of this document for compensatory planting areas	Await current LLTNP position regarding compensatory tree planting	
New access ways and footpaths		New vehicular access - Gravel bound access road Woodland parking areas - Gravel bound access road & parking 3.8m pedestrian /cycle path - Gravel bound access road Tertiary small footpath - Gravel bound walkway Sustrans improvement area (likely to be developed in partnership with WDC and Abellio) Finishes as elsewhere in Balloch	

Appendix E MicroDrainage Calculations

Stantec UK Ltd								Page 1
Caversham Bridge Hous	е							
Waterman Place								
Reading, RG1 8DN								Micco
Date 20/04/2022 17:19		I	Design	ed bv	sm	accoll		– Micro
File			Checke	-	0110		-	Drainage
					rol	2020.	1	
Innovyze			Source	COIIC	101	2020.	. 1	
Summary	of Resul	ts f	or 2 y	<u>year F</u>	Retu	rn Per	riod (+55%)	
St	orm	Max	Max	Max		Max	Status	
Ev	rent		-			Volume		
		(m)	(m)	(1/s	5)	(m³)		
15 m.	in Summer	0.564	1 0.564	97	7.0	169.2	ОК	
30 m:	in Summer	0.734	1 0.734	97	7.0	220.1	Flood Risk	
60 m.	in Summer	0.856	5 0.856	5 97	7.0	256.8	Flood Risk	
	in Summer						Flood Risk	
	in Summer						Flood Risk	
	in Summer						Flood Risk	
	in Summer					190.1	O K	
	in Summer					156.6	ОК	
	in Summer in Summer					132.3 115.5		
	in Summer				3.8 1.7	100.4	ОК	
	in Summer				3.2	85.5	0 K	
	in Summer				3.6	73.3		
2880 m:	in Summer	0.220	0.220) 45	5.1	65.9	O K	
4320 m	in Summer	0.190	0.190) 35	5.0	56.9	ОК	
5760 m:	in Summer	0.171	L 0.171	. 29	9.2	51.3	O K	
	in Summer					47.4	0 K	
	in Summer					44.6	ОК	
	in Summer					42.2		
	in Winter in Winter					192.7	O K Flood Risk	
	storm					-	Time-Peak	
E	lvent	(mm/	/hr) V			lume	(mins)	
				(m³)	,	(m³)		
15 /	min Summer	44.	.092	0.0		237.2	21	
	min Summer		.577	0.0		329.3	31	
	min Summer		.634	0.0		445.2	48	
	min Summer		.668	0.0		590.0	82	
	min Summer min Summer		.628	0.0		688.3	116	
	min Summer min Summer		.927 .977	0.0 0.0		770.8 903.8	148 210	
	min Summer		. 843	0.0		1009.1	268	
	min Summer		.092	0.0		1099.3	324	
			.550	0.0		1178.9	380	
720 1	min Summer						100	
	min Summer min Summer		.812	0.0		1316.6	498	
960 1 1440 1	min Summer min Summer	: 3. : 2.	.812 .965	0.0		1316.6 1536.4	498 738	
960 1 1440 1 2160 1	min Summer min Summer min Summer	2 3 . 2 2 . 2 2 .	.965 .300	0.0	-	1536.4 1788.4	738 1100	
960 1 1440 1 2160 1 2880 1	min Summer min Summer min Summer min Summer	2 3. 2 2. 2 2. 2 1.	.965 .300 .922	0.0 0.0 0.0	-	1536.4 1788.4 1991.8	738 1100 1468	
960 1 1440 2 2160 1 2880 1 4320 1	min Summer min Summer min Summer min Summer min Summer	2 3 . 2 2 . 2 2 . 2 1 . 2 1 .	.965 .300 .922 .489	0.0 0.0 0.0 0.0		1536.4 1788.4 1991.8 2315.3	738 1100 1468 2200	
960 1 1440 1 2160 1 2880 1 4320 1 5760 1	min Summer min Summer min Summer min Summer min Summer min Summer	3. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	.965 .300 .922 .489 .240	0.0 0.0 0.0 0.0 0.0		1536.4 1788.4 1991.8 2315.3 2571.1	738 1100 1468 2200 2912	
960 1 1440 1 2160 1 2880 1 4320 1 5760 1 7200 1	min Summer min Summer min Summer min Summer min Summer min Summer min Summer	3. 2. 2. 2. 1. 1. 1. 1.	.965 .300 .922 .489 .240 .076	0.0 0.0 0.0 0.0 0.0 0.0		1536.4 1788.4 1991.8 2315.3 2571.1 2788.1	738 1100 1468 2200 2912 3632	
960 1 1440 1 2160 1 2880 1 4320 1 5760 1 7200 1 8640 1	min Summer min Summer min Summer min Summer min Summer min Summer min Summer	3 . 2 2 . 2 2 . 2 1 . 2 1 . 2 1 . 2 1 . 2 1 . 2 1 . 2	.965 .300 .922 .489 .240 .076 .958	0.0 0.0 0.0 0.0 0.0 0.0		1536.4 1788.4 1991.8 2315.3 2571.1 2788.1 2978.7	738 1100 1468 2200 2912 3632 4392	
960 1 1440 1 2160 1 2880 1 4320 1 5760 1 7200 1 8640 1 10080 1	min Summer min Summer min Summer min Summer min Summer min Summer min Summer	3 . 2 2 . 2 1 . 2	.965 .300 .922 .489 .240 .076 .958 .868	0.0 0.0 0.0 0.0 0.0 0.0		1536.4 1788.4 1991.8 2315.3 2571.1 2788.1	738 1100 1468 2200 2912 3632	
960 1 1440 1 2160 1 2880 1 4320 1 5760 1 7200 1 8640 1 10080 1 15 1	min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer	3 5 2 5 2 5 1 5 1 5 1 5 1 5 0 5 0 5 4	.965 .300 .922 .489 .240 .076 .958 .868	0.0 0.0 0.0 0.0 0.0 0.0 0.0		1536.4 1788.4 1991.8 2315.3 2571.1 2788.1 2978.7 3149.8	738 1100 1468 2200 2912 3632 4392 5112	
960 1 1440 1 2160 1 2880 1 4320 1 5760 1 7200 1 8640 1 10080 1 15 1	min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Winter min Winter	3 4 5 2 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 <td< td=""><td>.965 .300 .922 .489 .240 .076 .958 .868 .092</td><td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td><td></td><td>1536.4 1788.4 1991.8 2315.3 2571.1 2788.1 2978.7 3149.8 265.8 368.9</td><td>738 1100 1468 2200 2912 3632 4392 5112 21</td><td></td></td<>	.965 .300 .922 .489 .240 .076 .958 .868 .092	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		1536.4 1788.4 1991.8 2315.3 2571.1 2788.1 2978.7 3149.8 265.8 368.9	738 1100 1468 2200 2912 3632 4392 5112 21	

Stantec UK L						
Caversham Br	idge House					
Waterman Pla	ce					
Reading, RG1	8DN					
Date 20/04/2	022 17:19	De	signe	ed by s	smaccoll	<u> </u>
File			ecked	-		
Innovyze					51 2020.	1
шоууге			Juice	CONCIO	JI 2020.	, ⊥
	Summary of Resul	ts for	c 2 37	aar Ro	turn Po	riod (+55%)
	<u>Summary or Resur</u>	101		ear ne	CULII IC.	1100 (155%)
	Storm	Max	Max	Max	Max	Status
	Event	Level	Depth	Contro	l Volume	
		(m)	- (m)			
	60 min Winter					Flood Risk
	120 min Winter					Flood Risk
	180 min Winter	0.833	0.833			Flood Risk
	240 min Winter				0 211.8	Flood Risk
	360 min Winter					
	480 min Winter			93.		
	600 min Winter			84.		
	720 min Winter				9 92.2	
	960 min Winter					
	1440 min Winter					
	2160 min Winter			39.		ОК
	2880 min Winter				6 54.6	O K
	4320 min Winter			25.		
	5760 min Winter 7200 min Winter				1 42.9 4 39.8	
	8640 min Winter				4 39.0 4 37.4	O K
	10080 min Winter			14.		O K
	Storm	Rain			-	Time-Peak
	Event	(mm/h	r) Vo		Volume	(mins)
			(m³)	(m³)	
	60 min Winter	20.6	34	0.0	498.7	52
	120 min Winter	13.6	68	0.0	660.8	90
	180 min Winter	10.6	28	0.0	770.9	124
	240 min Winter			0.0	863.4	156
	360 min Winter			0.0	1012.3	214
		5.8		0.0	1130.3	264
	480 min Winter		0.0	0.0	1231.2	320
	600 min Winter					
	600 min Winter 720 min Winter	4.5	50	0.0	1320.4	378
	600 min Winter 720 min Winter 960 min Winter	4.5 3.8	50 12	0.0	1474.7	498
	600 min Winter 720 min Winter 960 min Winter 1440 min Winter	4.5 3.8 2.9	50 12 65	0.0	1474.7 1720.9	498 740
	600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter	4.5 3.8 2.9 2.3	50 12 65 00	0.0 0.0 0.0	1474.7 1720.9 2003.1	498 740 1104
	600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter	4.5 3.8 2.9 2.3 1.9	50 12 65 00 22	0.0 0.0 0.0 0.0	1474.7 1720.9 2003.1 2230.9	498 740 1104 1468
	600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter	4.5 3.8 2.9 2.3 1.9 1.4	50 12 65 00 22 89	0.0 0.0 0.0 0.0 0.0	1474.7 1720.9 2003.1 2230.9 2593.2	498 740 1104 1468 2172
	600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter	4.5 3.8 2.9 2.3 1.9 1.4 1.2	50 12 65 00 22 89 40	0.0 0.0 0.0 0.0 0.0 0.0	1474.7 1720.9 2003.1 2230.9 2593.2 2879.7	498 740 1104 1468 2172 2896
	600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 7200 min Winter	4.5 3.8 2.9 2.3 1.9 1.4 1.2 1.0	50 12 65 00 22 89 40 76	0.0 0.0 0.0 0.0 0.0 0.0 0.0	1474.7 1720.9 2003.1 2230.9 2593.2 2879.7 3122.7	498 740 1104 1468 2172 2896 3624
	600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter	4.5 3.8 2.9 2.3 1.9 1.4 1.2 1.0 0.9	50 12 65 00 22 89 40 76 58	0.0 0.0 0.0 0.0 0.0 0.0	1474.7 1720.9 2003.1 2230.9 2593.2 2879.7	498 740 1104 1468 2172 2896

Stantec UK Ltd		Page 3
Caversham Bridge House		
Waterman Place		
Reading, RG1 8DN		Mirro
Date 20/04/2022 17:19	Designed by smaccoll	Micro Drainage
File	Checked by	Diginiage
Innovyze	Source Control 2020.1	
Ra	infall Details	
M5-60 (mm) Ratio R	FSR Winter Storms 2 Cv (Summer) 0 nd and Ireland Cv (Winter) 0 16.000 Shortest Storm (mins) 0.250 Longest Storm (mins) 10	.750 .840 15 0080
Summer Storms	Yes Climate Change %	+55
<u></u>	ne Area Diagram	
Tota	al Area (ha) 2.880	
Time (mins) Area Ti From: To: (ha) Fro	me (mins) Area Time (mins) Area om: To: (ha) From: To: (ha)	
0 4 0.960	4 8 0.960 8 12 0.960	
©198	32-2020 Innovyze	

Stantec UK Ltd			Page 4									
Caversham Bridge House												
Waterman Place												
Reading, RG1 8DN			Mirro									
Date 20/04/2022 17:19	Designed b	y smaccoll	Drainage									
File	Checked by		Diamage									
Innovyze	Source Con	trol 2020.1										
Model Details												
	Model Detai	<u>15</u>										
Storage is Online Cover Level (m) 1.000												
<u>Tank or Pond Structure</u>												
Invert Level (m) 0.000												
Depth (m) Area (m ²	Depth (m) Area	(m ²) Depth (m)	Area (m²)									
0.000 300.	1.000 3	00.0 1.001	0.0									
<u>Hydro-Br</u>	<u>ke® Optimum Ou</u>	tflow Control										
Unit Referen	ce	MD-SH	E-0387-9710-1200-9710									
Design Head			1.200									
Design Flow (1, Flush-F			97.1 Calculated									
Object		Mini	mise upstream storage									
Applicat:			Surface									
Sump Availab	Le		Yes									
Diameter (r	,		387									
Invert Level			0.000									
Minimum Outlet Pipe Diameter (r Suggested Manhole Diameter (r		Design (Contact	450 Hydro International)									
		ad (m) Flow (1/: 1.200 97										
	. ,	0.571 97										
		0.961 87										
Mean Flow o	er Head Range	- 76	.9									
The hydrological calculations h the Hydro-Brake® Optimum as spe than a Hydro-Brake Optimum® be invalidated	ified. Should a	nother type of	control device other									
Depth (m) Flow (1/s) Depth (m)	Flow (l/s) Depth	(m) Flow (l/s)	Depth (m) Flow (l/s)									
0.100 10.8 1.200		.000 151.7										
0.200 38.4 1.400		.500 163.5										
0.300 73.4 1.600		.000 174.6										
0.400 94.4 1.800		.500 184.9										
0.500 96.6 2.000 0.600 96.9 2.200		.000 194.7 .500 204.0										
0.800 93.9 2.200		.000 212.9										
1.000 88.9 2.600		.500 221.4										
	I		I									
	©1982-2020 Inn	ovyze										

Stantec UK Ltd						Page 1
Caversham Bridge House						
Waterman Place						
Reading, RG1 8DN						– Micro
Date 20/04/2022 16:51	E	esign	ed by s	maccoll	-	
File	C	Checke	d by			Drainage
Innovyze				1 2020.	1	
<u>Summary of Resul</u>	ts fo	<u>or 2 y</u>	ear Ret	urn Pe	<u>riod (+55%)</u>	
Storm	Max	Max	Max	Max	Status	
Event		-	Control (1/s)	. Volume (m³)		
	(m)	(m)	(1/5)	(111-)		
15 min Summer	0.620	0.620	85.6	92.9	O K	
30 min Summer					Flood Risk	
60 min Summer					Flood Risk	
120 min Summer 180 min Summer					Flood Risk Flood Risk	
240 min Summer					O K	
360 min Summer						
480 min Summer					ОК	
600 min Summer					O K	
720 min Summer					O K	
960 min Summer					ОК	
1440 min Summer					ОК	
2160 min Summer 2880 min Summer					ОК	
4320 min Summer					0 K	
5760 min Summer					0 K	
7200 min Summer	0.128	0.128	16.6	5 19.1	O K	
8640 min Summer					O K	
10080 min Summer				17.0	O K	
15 min Winter 30 min Winter					Flood Risk Flood Risk	
Storm	Ra	in Fl	ooded Di	scharge	Time-Peak	
Event	(mm/	'hr) Vo		Volume	(mins)	
				(m 3)		
		((m³)	(m³)		
15 min Summer		092	(m³) 0.0	155.2	20	
30 min Summer	30.	092 577	(m³) 0.0 0.0	155.2 215.3	29	
30 min Summer 60 min Summer	30. 20.	092 577 634	(m³) 0.0 0.0 0.0	155.2 215.3 290.8	29 46	
30 min Summer 60 min Summer 120 min Summer	30. 20. 13.	092 577 634 668	(m ³) 0.0 0.0 0.0 0.0	155.2 215.3 290.8 385.3	29 46 80	
30 min Summer 60 min Summer 120 min Summer 180 min Summer	30. 20. 13. 10.	092 577 634 668 628	(m ³) 0.0 0.0 0.0 0.0 0.0	155.2 215.3 290.8 385.3 449.5	29 46 80 110	
30 min Summer 60 min Summer 120 min Summer	30. 20. 13. 10. 8.	092 577 634 668	(m ³) 0.0 0.0 0.0 0.0	155.2 215.3 290.8 385.3	29 46 80	
30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer	30. 20. 13. 10. 8. 6.	092 577 634 668 628 927	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0	155.2 215.3 290.8 385.3 449.5 503.4	29 46 80 110 140	
30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer 600 min Summer	30. 20. 13. 10. 8. 6. 5.	092 577 634 668 628 927 977	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	155.2 215.3 290.8 385.3 449.5 503.4 590.1	29 46 80 110 140 198 254 312	
30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer 600 min Summer 720 min Summer	30. 20. 13. 10. 8. 6. 5. 5. 4.	092 577 634 668 628 927 977 843 092 550	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	155.2 215.3 290.8 385.3 449.5 503.4 590.1 659.0 717.8 769.8	29 46 80 110 140 198 254 312 372	
30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer 720 min Summer 960 min Summer	30. 20. 13. 10. 8. 6. 5. 5. 4. 3.	092 577 634 668 628 927 977 843 092 550 812	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	155.2 215.3 290.8 385.3 449.5 503.4 590.1 659.0 717.8 769.8 859.7	29 46 80 110 140 198 254 312 372 492	
30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer 720 min Summer 960 min Summer 1440 min Summer	30. 20. 13. 10. 5. 5. 5. 4. 3. 2.	092 577 634 668 628 927 977 843 092 550 812 965	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	155.2 215.3 290.8 385.3 449.5 503.4 590.1 659.0 717.8 769.8 859.7 1003.3	29 46 80 110 140 198 254 312 372 492 734	
30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer 600 min Summer 720 min Summer 960 min Summer 1440 min Summer 2160 min Summer	30. 20. 13. 10. 5. 5. 5. 4. 2. 2. 2.	092 577 634 668 628 927 977 843 092 550 812 965 300	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	155.2 215.3 290.8 385.3 449.5 503.4 590.1 659.0 717.8 769.8 859.7 1003.3 1167.6	29 46 80 110 140 198 254 312 372 492 734 1100	
30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer 720 min Summer 960 min Summer 1440 min Summer	30. 20. 13. 10. 6. 6. 5. 6. 5. 6. 7. 6. 7. <	092 577 634 668 628 927 977 843 092 550 812 965	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	155.2 215.3 290.8 385.3 449.5 503.4 590.1 659.0 717.8 769.8 859.7 1003.3	29 46 80 110 140 198 254 312 372 492 734	
30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer 600 min Summer 720 min Summer 960 min Summer 1440 min Summer 2160 min Summer 2880 min Summer	30. 20. 13. 10. 8. 6. 5. 6. 5. 6. 7. 6. 7. <	092 577 634 668 628 927 977 843 092 550 812 965 300 922	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	155.2 215.3 290.8 385.3 449.5 503.4 590.1 659.0 717.8 769.8 859.7 1003.3 1167.6 1300.4	29 46 80 110 140 198 254 312 372 492 734 1100 1456	
30minSummer60minSummer120minSummer180minSummer240minSummer360minSummer360minSummer480minSummer600minSummer720minSummer960minSummer1440minSummer2160minSummer2880minSummer4320minSummer5760minSummer7200minSummer	30. 20. 13. 10. 8. 6. 5. 4. 2. 2. 2. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1.	092 577 634 668 628 927 977 843 092 550 812 965 300 922 489 240 076	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	155.2 215.3 290.8 385.3 449.5 503.4 590.1 659.0 717.8 769.8 859.7 1003.3 1167.6 1300.4 1511.7	29 46 80 110 140 198 254 312 372 492 734 1100 1456 2196	
30minSummer60minSummer120minSummer180minSummer240minSummer360minSummer360minSummer480minSummer600minSummer720minSummer960minSummer1440minSummer2160minSummer2880minSummer4320minSummer5760minSummer7200minSummer8640minSummer	30. 20. 13. 10. 8. 6. 5. 4. 3. 2. 2. 2. 2. 1. <	092 577 634 668 927 977 843 092 550 812 965 300 922 489 240 076 958	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	155.2 215.3 290.8 385.3 449.5 503.4 590.1 659.0 717.8 769.8 859.7 1003.3 1167.6 1300.4 1511.7 1678.4 1820.1 1944.6	29 46 80 110 140 198 254 312 372 492 734 1100 1456 2196 2920 3632 4336	
30minSummer60minSummer120minSummer180minSummer240minSummer360minSummer360minSummer480minSummer600minSummer720minSummer960minSummer1440minSummer2160minSummer2880minSummer4320minSummer5760minSummer7200minSummer8640minSummer10080minSummer	30. 20. 13. 10. 8. 6. 5. 6. 7. <	092 577 634 668 927 977 843 092 550 812 965 300 922 489 240 076 958 868	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	155.2 215.3 290.8 385.3 449.5 503.4 590.1 659.0 717.8 769.8 859.7 1003.3 1167.6 1300.4 1511.7 1678.4 1820.1 1944.6 2056.4	29 46 80 110 140 198 254 312 372 492 734 1100 1456 2196 2920 3632 4336 5128	
30minSummer60minSummer120minSummer180minSummer240minSummer360minSummer360minSummer480minSummer600minSummer720minSummer960minSummer1440minSummer2160minSummer2880minSummer4320minSummer5760minSummer7200minSummer8640minSummer10080minSummer15minWinter	30. 20. 13. 10. 8. 6. 5. 6. 7. <	0 92 577 634 668 927 977 843 092 550 812 965 300 922 489 240 076 958 868 092	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	155.2 215.3 290.8 385.3 449.5 503.4 590.1 659.0 717.8 769.8 859.7 1003.3 1167.6 1300.4 1511.7 1678.4 1820.1 1944.6 2056.4 173.9	29 46 80 110 140 198 254 312 372 492 734 1100 1456 2196 2920 3632 4336 5128 21	
30minSummer60minSummer120minSummer180minSummer240minSummer360minSummer360minSummer480minSummer600minSummer720minSummer960minSummer1440minSummer2160minSummer2880minSummer4320minSummer5760minSummer7200minSummer8640minSummer10080minSummer	30. 20. 13. 10. 8. 6. 5. 6. 7. <	092 577 634 668 927 977 843 092 550 812 965 300 922 489 240 076 958 868	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	155.2 215.3 290.8 385.3 449.5 503.4 590.1 659.0 717.8 769.8 859.7 1003.3 1167.6 1300.4 1511.7 1678.4 1820.1 1944.6 2056.4	29 46 80 110 140 198 254 312 372 492 734 1100 1456 2196 2920 3632 4336 5128	

Stantec UK Lt	d					
versham Bri	dge House					
aterman Plac	e					
Reading, RG1	8DN					
ate 20/04/20		Dog	igned by	7 670 0		1
	22 10.51			2 Sillac	.0011	L
'ile			cked by			-
nnovyze		Sou	rce Cont	crol 2	2020.	.1
	Summary of Resul	ts for	<u>2 year</u>	Returr	n Pe	<u>riod (+55%)</u>
	0 t		(a.u. Ma			Status
	Storm Event		Max Ma Apth Cont		Max	Status
	Evenc		(m) (1/		m ³)	
		(111)	(111) (11)	5) (,	
	60 min Winter	0.979 0.	.979 8	5.6 1	46.8	Flood Risk
	120 min Winter	0.832 0.	.832 8	5.6 1	24.8	Flood Risk
	180 min Winter	0.596 0.	.596 8	5.6	89.4	ОК
	240 min Winter	0.439 0.	.439 8	4.9	65.9	ОК
	360 min Winter	0.320 0.	.320 7	5.5	47.9	ОК
	480 min Winter	0.282 0.	.282 6	3.9	42.3	ОК
	600 min Winter	0.258 0.	.258 5	5.9	38.7	O K
	720 min Winter	0.240 0.	.240 5	0.1	36.1	O K
	960 min Winter	0.216 0.		2.2	32.4	O K
	1440 min Winter	0.187 0.	.187 3	2.9	28.0	O K
	2160 min Winter	0.162 0.	.162 2	5.5	24.2	O K
	2880 min Winter	0.147 0.	.147 2	1.4	22.0	0 K
	4320 min Winter				19.1	
	5760 min Winter				17.3	
	7200 min Winter			2.0		
	8640 min Winter			0.6		
	10080 min Winter	0.096 0.	.096	9.7	14.3	0 K
	Storm	Rain	Flooded	Disch	argo	Time-Peak
	Event		Volume	Volu	-	(mins)
		. , _,	(m ³)	(m ³	3)	•
		00.000		_		
	60 min Winter				25.7	48
	120 min Winter				31.6	84
	180 min Winter				03.4	114
	240 min Winter 360 min Winter				63.8 61.0	
	480 min Winter 480 min Winter				38.0	194 254
	480 min Winter 600 min Winter				38.0 03.9	
	720 min Winter				62.2	
	960 min Winter				62.9	
	1440 min Winter				23.7	
	2160 min Winter				07.7	
		2.000			56.4	
		1 922	>	1 /1		T 1 0 1
	2880 min Winter					
	2880 min Winter 4320 min Winter	1.489	0.0	16	93.1	2196
	2880 min Winter 4320 min Winter 5760 min Winter	1.489 1.240	0.0 0.0	16 18	93.1 79.8	2196 2864
	2880 min Winter 4320 min Winter	1.489 1.240 1.076	0.0 0 0.0 0 0.0 5 0.0	16 18 20	93.1	2196 2864 3616

Stantec UK Ltd		Page 3
Caversham Bridge House		
Waterman Place		
Reading, RG1 8DN		Mirco
Date 20/04/2022 16:51	Designed by smaccoll	Micro Drainage
File	Checked by	Dialitage
Innovyze	Source Control 2020.1	
Ra:	infall Details	
Rainfall Model Return Period (years) Region Scotlar M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms 2 Cv (Summer) 0. and and Ireland Cv (Winter) 0. 16.000 Shortest Storm (mins) 0.250 Longest Storm (mins) 10 Yes Climate Change %	.750 .840 15
Tim	ne Area Diagram	
	l Area (ha) 1.880	
	me (mins) Area Time (mins) Area	
	om: To: (ha) From: To: (ha)	
0 4 0.627	4 8 0.627 8 12 0.627	
	2. 2020 Tan ora	
0198	2-2020 Innovyze	

Stantec UK Ltd				Page 4
Caversham Bridge House				
Waterman Place				
Reading, RG1 8DN				Micro
Date 20/04/2022 16:51	Designed by s	maccoll		
File	Checked by			Drainage
Innovyze	Source Contro	1 2020.1		
<u>1</u>	<u>Model Details</u>			
Storage is Or	nline Cover Level	(m) 1.000		
Tank	or Pond Struct	ure		
Inve	rt Level (m) 0.0	00		
Depth (m) Area (m ²) Dep	oth (m) Area (m²)	Depth (m) A	rea (m²)	
0.000 150.0	1.000 150.0	1.001	0.0	
<u>Hydro-Brake®</u>	<u>Optimum Outfl</u>	<u>ow Control</u>		
	Reference MD-SH n Head (m)	E-0370-8570-1	.000-8570 1.000	
-	Flow (l/s)		85.7	
	Flush-Flo™		lculated	
7	Objective Mini pplication	mise upstream	n storage Surface	
	Available		Yes	
Dia	meter (mm)		370	
	Level (m)		0.000	
Minimum Outlet Pipe Dia Suggested Manhole Dia			450 2100	
Control Po	ints Head	(m) Flow (l/s)	
Design Point (Ca	alculated) 1.0			
E	Flush-Flo™ 0.5 Kick-Flo® 0.8	524 85. 331 78.		
Mean Flow over H		- 66.		
	-			
The hydrological calculations have the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util invalidated	ed. Should anoth	ner type of c	ontrol devi	ice other
Depth (m) Flow (l/s) Depth (m) Flow	v (l/s) Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)
0.100 10.5 1.200	93.6 3.000		7.000	221.4
0.200 37.0 1.400 0.300 69.7 1.600	100.9 3.500 107.7 4.000		7.500 8.000	229.1 236.4
0.400 84.1 1.800	114.0 4.500		8.500	243.6
0.500 85.5 2.000	120.0 5.000		9.000	250.5
0.600 85.1 2.200 0.800 79.9 2.400	125.7 5.500 131.2 6.000		9.500	257.3
1.000 85.7 2.600	136.4 6.500			
	·			
©198	82-2020 Innovy:	ze		

Stantec UK Ltd							Page 1
Caversham Bride	ge House						
Waterman Place							
Reading, RG1 81	ON						Micro
Date 20/04/2022	2 17:16	I	Design	ed by s	maccoll	 L	
File			Checke	_			Drainago
Innovyze				Contro	1 2020	1	
тшоууге		K.	Jource	CONCLO	1 2020.	, ⊥	
<u>St</u>	ummary of Resul	ts fo	or 30 y	year Re	turn Pe	eriod (+55%)	
	Storm	Max	Max	Max	Max	Status	
	Event	Level	L Depth	Control	Volume		
		(m)	(m)	(l/s)	(m³)		
	15 min Summer	0 536	5 0 536	190 2	321.6	ОК	
	30 min Summer				414.0	0 K	
	60 min Summer					Flood Risk	
	120 min Summer	0.803	3 0.803	194.1	481.7	Flood Risk	
	180 min Summer	0.747	0.747	194.1	448.4	Flood Risk	
	240 min Summer				408.6	O K	
	360 min Summer				338.1		
	480 min Summer				290.3		
	600 min Summer 720 min Summer				265.1 247.3		
	960 min Summer				247.3		
	1440 min Summer			106.8			
	2160 min Summer			83.2			
	2880 min Summer	0.247	0.247	69.3	148.0	O K	
	4320 min Summer	0.212	2 0.212	52.9	127.5	O K	
	5760 min Summer					0 K	
	7200 min Summer						
	8640 min Summer 10080 min Summer				99.0 93.6	ОК	
	15 min Winter				93.6 361.6	ОК	
	30 min Winter					Flood Risk	
	Storm	Ra	in Fl	ooded Di		Time-Peak	
	Storm Event		in Fl /hr) Vc			Time-Peak (mins)	
			/hr) Vo		scharge		
	Event 15 min Summe	(mm,	/hr) Vc .788	olume v m³) 0.0	scharge Volume (m³) 433.1	(mins) 20	
	Event 15 min Summe 30 min Summe	(mm, r 80. r 56.	/hr) Vc .788 .475	olume ' m ³) 0.0 0.0	scharge Volume (m³) 433.1 606.8	(mins) 20 30	
	Event 15 min Summe 30 min Summe 60 min Summe	(mm, r 80. r 56. r 37.	/hr) Vc .788 .475 .547	elume v m ³) 0.0 0.0 0.0	scharge Volume (m ³) 433.1 606.8 809.4	(mins) 20 30 48	
	Event 15 min Summe 30 min Summe	(mm, r 80 r 56 r 37 r 24	(hr) Vc .788 .475 .547 .306	<pre>plume v m³) 0.0 0.0 0.0 0.0</pre>	scharge Volume (m³) 433.1 606.8	(mins) 20 30	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe	(mm, r 80. r 56. r 37. r 24. r 18.	(hr) Vc .788 .475 .547 .306	elume v m ³) 0.0 0.0 0.0	scharge Volume (m ³) 433.1 606.8 809.4 1048.4	(mins) 20 30 48 80	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe	(mm, r 80 r 56 r 37 r 24 r 18 r 18	<pre>/hr) Vc .788 .475 .547 .306 .707</pre>	Olume Y 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	scharge Volume (m ³) 433.1 606.8 809.4 1048.4 1210.6	(mins) 20 30 48 80 114	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe	(mm, r 80. r 56. r 37. r 24. r 18. r 15. r 11. r 9.	<pre>/hr) Vc .788 .475 .547 .306 .707 .510 .880 .821</pre>	clume v 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	scharge Volume (m ³) 433.1 606.8 809.4 1048.4 1210.6 1338.4	(mins) 20 30 48 80 114 144 204 260	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe 480 min Summe	(mm, r 80 r 56 r 37 r 24 r 18 r 15 r 11 r 9 r 8	<pre>/hr) Vc .788 .475 .547 .306 .707 .510 .880 .821 .469</pre>	Jume Y m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Scharge Volume (m ³) 433.1 606.8 809.4 1048.4 1210.6 1338.4 1538.0 1695.3 1827.5	(mins) 20 30 48 80 114 144 204 260 318	
	Event Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 360 min Summe 480 min Summe 600 min Summe 720 min Summe	(mm, r 80 r 56 r 37 r 24 r 18 r 15 r 11 r 9 r 8 r 7	<pre>/hr) Vc .788 .475 .547 .306 .707 .510 .880 .821 .469 .502</pre>	Jume Y m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	scharge Volume (m ³) 433.1 606.8 809.4 1048.4 1210.6 1338.4 1538.0 1695.3 1827.5 1942.6	(mins) 20 30 48 80 114 144 204 260 318 378	
	Event Event 15 min Summe 30 min Summe 120 min Summe 120 min Summe 180 min Summe 360 min Summe 480 min Summe 600 min Summe 720 min Summe 960 min Summe	(mm, r 80. r 56. r 37. r 24. r 18. r 15. r 11. r 9. r 8. r 7. r 6.	<pre>/hr) Vc .788 .475 .547 .306 .707 .510 .880 .821 .469 .502 .194</pre>	Jume Y m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	scharge Volume (m ³) 433.1 606.8 809.4 1048.4 1210.6 1338.4 1538.0 1695.3 1827.5 1942.6 2138.4	(mins) 20 30 48 80 114 144 204 260 318 378 498	
	Event Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 1440 min Summe	(mm, r 80. r 56. r 37. r 24 r 18. r 15. r 11. r 9. r 8. r 7. r 8. r 7. r 6. r 4.	<pre>/hr) Vc .788 .475 .547 .306 .707 .510 .880 .821 .469 .502 .194 .727</pre>	Jume Y m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	scharge Volume (m ³) 433.1 606.8 809.4 1048.4 1210.6 1338.4 1538.0 1695.3 1827.5 1942.6 2138.4 2447.6	(mins) 20 30 48 80 114 144 204 260 318 378 498 740	
	Event Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 1440 min Summe 2160 min Summe	(mm, r 80. r 56. r 37. r 24. r 18. r 15. r 11. r 9. r 8. r 7. r 6. r 4. r 3.	<pre>/hr) Vc .788 .475 .547 .306 .707 .510 .880 .821 .469 .502 .194 .727 .604</pre>	Jume Y m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	scharge Volume (m ³) 433.1 606.8 809.4 1048.4 1210.6 1338.4 1538.0 1695.3 1827.5 1942.6 2138.4 2447.6 2801.4	(mins) 20 30 48 80 114 144 204 260 318 378 498 740 1104	
	Event Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 1440 min Summe	(mm, r 80. r 56. r 37. r 24 r 18. r 15. r 11. r 9. r 8. r 7. r 6. r 4. r 3. r 2.	<pre>/hr) Vc .788 .475 .547 .306 .707 .510 .880 .821 .469 .502 .194 .727</pre>	Jume Y m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	scharge Volume (m ³) 433.1 606.8 809.4 1048.4 1210.6 1338.4 1538.0 1695.3 1827.5 1942.6 2138.4 2447.6	(mins) 20 30 48 80 114 144 204 260 318 378 498 740	
	Event Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 1440 min Summe 2160 min Summe 2880 min Summe	(mm, r 80. r 56. r 37. r 24 r 18. r 15. r 11. r 9. r 8. r 7. r 6. r 4. r 3. r 2. r 2. r 2. r 2.	<pre>/hr) Vc .788 .475 .547 .306 .707 .510 .880 .821 .469 .502 .194 .727 .604 .971</pre>	Jume Y m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	scharge Volume (m ³) 433.1 606.8 809.4 1048.4 1210.6 1338.4 1538.0 1695.3 1827.5 1942.6 2138.4 2447.6 2801.4 3078.9	(mins) 20 30 48 80 114 144 204 260 318 378 498 740 1104 1468	
	Event Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 960 min Summe 1440 min Summe 2160 min Summe 2880 min Summe 4320 min Summe	(mm, r 80. r 56. r 37. r 24 r 18. r 15. r 11. r 9. r 8. r 7. r 6. r 7. r 4. r 3. r 2. r 2. r 1. r 1. r 1. r 1. r 7. r 7. r 1. r 1. r 7. r 7. r 1. r 7. r 7. r 7. r 1. r 7. r 7. r 7. r 1. r 7. r 7. r 7. r 7. r 7. r 7. r 7. r 7	<pre>/hr) Vc .788 .475 .547 .306 .707 .510 .880 .821 .469 .502 .194 .727 .604 .971 .261</pre>	Jume Y m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	scharge Volume (m ³) 433.1 606.8 809.4 1048.4 1210.6 1338.4 1538.0 1695.3 1827.5 1942.6 2138.4 2447.6 2801.4 3078.9 3513.2	(mins) 20 30 48 80 114 144 204 260 318 378 498 740 1104 1468 2204	
	Event Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 360 min Summe 720 min Summe 2160 min Summe 2380 min Summe 2320 min Summe 5760 min Summe 3640 min Summe	(mm, r 80. r 56. r 37. r 24 r 18 r 15. r 11. r 9. r 8. r 7. r 6. r 4. r 3. r 2. r 1. r 1. r 1. r 1. r 1. r 1. r 1. r 1	<pre>/hr) Vc .788 .475 .547 .306 .707 .510 .880 .821 .469 .502 .194 .727 .604 .971 .261 .862 .601 .415</pre>	Jume Y m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	scharge Volume (m ³) 433.1 606.8 809.4 1048.4 1210.6 1338.4 1538.0 1695.3 1827.5 1942.6 2138.4 2447.6 2801.4 3078.9 3513.2 3859.6 4148.9 4401.0	(mins) 20 30 48 80 114 144 204 260 318 378 498 740 1104 1468 2204 2936 3672 4360	
	Event Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 240 min Summe	(mm, r 80. r 56. r 37. r 24 r 18 r 15. r 11. r 9. r 8. r 7. r 6. r 4. r 3. r 2. r 1. r 1. r 1. r 1. r 1. r 1. r 1. r 1	<pre>/hr) Vc .788 .475 .547 .306 .707 .510 .880 .821 .469 .502 .194 .727 .604 .971 .261 .862 .601 .415 .275</pre>	lume " m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	scharge Volume (m ³) 433.1 606.8 809.4 1048.4 1210.6 1338.4 1538.0 1695.3 1827.5 1942.6 2138.4 2447.6 2801.4 3078.9 3513.2 3859.6 4148.9 4401.0 4625.5	(mins) 20 30 48 80 114 144 204 260 318 378 498 740 1104 1468 2204 2936 3672 4360 5064	
	Event Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 1440 min Summe 2160 min Summe 2880 min Summe 4320 min Summe 5760 min Summe 5760 min Summe 5760 min Summe 5760 min Summe 10080 min Summe 15 min Winte	(mm, r 80. r 56. r 37. r 24 r 18. r 15. r 11. r 9. r 8. r 7. r 6. r 4. r 3. r 2. r 1. r 1. r 1. r 1. r 1. r 2. r 2. r 2. r 1. r 2. r 2. r 2. r 1. r 2. r 1. r 2. r 2. r 1. r 1. r 2. r 1. r 1. r 2. r 1. r 1. r 2. r 1. r 1. r 1. r 1. r 1. r 1. r 2. r 1. r 1. r 1. r 1. r 1. r 1. r 1. r 1	<pre>/hr) Vc .788 .475 .547 .306 .707 .510 .880 .821 .469 .502 .194 .727 .604 .971 .261 .862 .601 .415 .275 .788</pre>	lume n ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	scharge Volume (m ³) 433.1 606.8 809.4 1048.4 1210.6 1338.4 1538.0 1695.3 1827.5 1942.6 2138.4 2447.6 2801.4 3078.9 3513.2 3859.6 4148.9 4401.0 4625.5 485.5	(mins) 20 30 48 80 114 144 204 260 318 378 498 740 1104 1468 2204 2936 3672 4360 5064 21	
	Event Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 240 min Summe	(mm, r 80. r 56. r 37. r 24 r 18. r 15. r 11. r 9. r 8. r 7. r 6. r 4. r 3. r 2. r 1. r 1. r 1. r 1. r 1. r 2. r 2. r 2. r 1. r 2. r 2. r 2. r 1. r 2. r 1. r 2. r 2. r 1. r 1. r 2. r 1. r 1. r 2. r 1. r 1. r 2. r 1. r 1. r 1. r 1. r 1. r 1. r 2. r 1. r 1. r 1. r 1. r 1. r 1. r 1. r 1	<pre>/hr) Vc .788 .475 .547 .306 .707 .510 .880 .821 .469 .502 .194 .727 .604 .971 .261 .862 .601 .415 .275</pre>	lume " m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	scharge Volume (m ³) 433.1 606.8 809.4 1048.4 1210.6 1338.4 1538.0 1695.3 1827.5 1942.6 2138.4 2447.6 2801.4 3078.9 3513.2 3859.6 4148.9 4401.0 4625.5	(mins) 20 30 48 80 114 144 204 260 318 378 498 740 1104 1468 2204 2936 3672 4360 5064	

	Ltd					
aversham H	Bridge House					
laterman Pl	lace					
Reading, RO	G1 8DN					
	/2022 17:16	I	Design	ed bv	smaccol	1
File			Checke	-		
					-1 2020	1
nnovyze			source	Contr	01 2020	• ⊥
	Ourse of Deeul	+ - <i>-</i> -		D	a torra . Da	
	<u>Summary of Resul</u>	ts ic	or 30 <u>v</u>	ear R	<u>eturn Pe</u>	eriod (+55%)
	Storm	Max	Max	Max	Max	Status
	Event				ol Volume	
	Evenc	(m)	(m)			
		(,	(,	(1,0)	()	
	60 min Winter	0.878	0.878	194.	1 527.1	Flood Risk
	120 min Winter					Flood Risk
	180 min Winter					Flood Risk
	240 min Winter				0 368.4	
	360 min Winter				0 280.4	
	480 min Winter				5 247.5	
	600 min Winter 720 min Winter				8 225.9 2 209.8	
	960 min Winter				2 209.8 6 187.3	
	1440 min Winter				6 160.3	
	2160 min Winter				0 137.8	
	2880 min Winter				5 123.9	
	4320 min Winter	0.178	3 0.178	38.	4 106.8	ОК
	5760 min Winter	0.161	0.161	31.	7 96.3	ОК
	7200 min Winter				2 88.8	O K
	8640 min Winter				0 83.3	
	10080 min Winter	0.132	2 0.132	21.	8 78.9	0 K
	Storm	Ra	in Fl	ooded I	ischarge	Time-Peak
	Event	(mm/	'hr) Vo	lume	Volume	(mins)
			(m³)	(m³)	
	60 min Winter	r 37	547	0.0	906.8	50
	120 min Winter			0.0	1174.4	86
	180 min Winter			0.0	1356.1	
	240 min Winter			0.0	1499.2	
	360 min Winter			0.0	1722.7	
	480 min Winter		.821	0.0	1899.0	262
	600 min Winter		.469	0.0	2047.0	322
	720 min Winter		.502	0.0	2175.9	
	OCO min Trinte	r 6.	.194	0.0	2395.3	
	960 min Winter		.727	0.0	2741.7	
	1440 min Winter					1104
	1440 min Winte: 2160 min Winte:	r 3.	.604	0.0	3137.8	
	1440 min Winte: 2160 min Winte: 2880 min Winte:	r 3. r 2.	.604 .971	0.0	3448.6	1468
	1440 min Winte: 2160 min Winte: 2880 min Winte: 4320 min Winte:	r 3. r 2. r 2.	.604 .971 .261	0.0	3448.6 3935.3	1468 2172
	1440 min Winte: 2160 min Winte: 2880 min Winte: 4320 min Winte: 5760 min Winte:	r 3. r 2. r 2. r 1.	.604 .971 .261 .862	0.0 0.0 0.0	3448.6 3935.3 4322.9	1468 2172 2912
	1440 min Winte: 2160 min Winte: 2880 min Winte: 4320 min Winte: 5760 min Winte: 7200 min Winte:	r 3. r 2. r 2. r 1. r 1.	.604 .971 .261 .862 .601	0.0 0.0 0.0 0.0	3448.6 3935.3 4322.9 4646.9	1468 2172 2912 3664
	1440 min Winte: 2160 min Winte: 2880 min Winte: 4320 min Winte: 5760 min Winte:	r 3. r 2. r 1. r 1. r 1.	.604 .971 .261 .862	0.0 0.0 0.0	3448.6 3935.3 4322.9	1468 2172 2912 3664 4400

Caversham Bridge Bouse Maternan, RGI 80N0 Designed by smaccoll Checked by Designed by smaccoll Checked by Innovyze Source Control 2020.1 Designed by smaccoll Checked by Innovyze Source Control 2020.1 Designed by smaccoll Checked by Innovyze Source Control 2020.1 Designed by smaccoll 2020.1 <th>Stantec UK Ltd</th> <th></th> <th>Page 3</th>	Stantec UK Ltd		Page 3
Reading, RG1 8DN Designed by smaccoll Designed by smaccoll Thowyze Source Control 2020.1 Checked by Dimovze Source Control 2020.1 Checked by Source Control 2020.1 Source Control 2020.1 Checked by Source Control 2020.1 Source Control 202	Caversham Bridge House		
Innovyre Source Control 2020.1 Rainfall Details Return Period (Years)			
Innovyre Source Control 2020.1 Rainfall Details Return Period (Years)			Micro
Innovyre Source Control 2020.1 Rainfall Details Return Period (Years)		Designed by smaccoll	Drainage
Finite StateAnifall ModeState3Cr (Sunmer) 0.750Section Scotland and IrelandCr (Winter) 0.800State R0.250Longest Storm (mins) 1008Summer StormYesClinate Change 8 + 55Clinate Change 8 + 56Clinate Change 8 + 56		-	
Name of the state of the stat	Innovyze	Source Control 2020.1	
Return Period (years)3(y (yumner), 0.80Retorn Scotland and Ireland(y (Winer), 0.80Ritor0.250Norvest Storm (mins)Ritor1Nertorn StormYearTimmer StormYearTimmer StormYearRitorYearYearYearRitorYearR	Ra	infall Details	
Total Area (ha) 2.880Imme (mins) Area (ha)Imme (mins) Area (ha)040.9603120400<	Return Period (years) Region Scotla M5-60 (mm) Ratio R	30Cv (Summer) 0.nd and IrelandCv (Winter) 0.16.000Shortest Storm (mins)0.250Longest Storm (mins)	750 840 15 080
Time(mins)Area From:Time(mins)Area From:Time(mins)Area From:To:(ha) To:(ha)040.960480.9608120.960	<u> </u>	ne Area Diagram	
From: To: (ha) From: To: (ha) 0 4 0.960 4 8 0.960 8 12 0.960	Tota	l Area (ha) 2.880	
01982-2020 Іппоууге	0 4 0.960	4 8 0.960 8 12 0.960	
©1982-2020 Innovyze			
01982-2020 Innovyze			
©1982-2020 Innovyze			
	©198	2-2020 Innovyze	

		Page 4
Caversham Bridge House		
Waterman Place		
Reading, RG1 8DN		Micro
Date 20/04/2022 17:16	Designed by smaccoll	
File	Checked by	Diamaye
Innovyze	Source Control 2020.1	
1	<u>Model Details</u>	
Storage is Or	line Cover Level (m) 1.000	
Tank	<u>or Pond Structure</u>	
Inve	rt Level (m) 0.000	
Depth (m) Area (m²) Dep	oth (m) Area (m²) Depth (m) Area (n	n²)
0.000 600.0	1.000 600.0 1.001	0.0
<u>Hydro-Brake®</u>	Optimum Outflow Control	
Unit Reference	MD-SHE-0518	-1941-1200-1941
Design Head (m)		1.200
Design Flow (l/s) Flush-Flo™		194.1 Calculated
Objective	Minimise u	pstream storage
Application		Surface
Sump Available		Yes
Diameter (mm)		518
Invert Level (m)	ite Operation Design (Operated Under	0.000
Minimum Outlet Pipe Diameter (mm) S Suggested Manhole Diameter (mm) S	ite Specific Design (Contact Hydro ite Specific Design (Contact Hydro	
Control Po		
	lculated) 1.200 194.1	
Design Point (Ca		
Design Point (Ca	lush-Flo™ 0.706 194.1	
	Clush-Flo™ 0.706 194.1 Kick-Flo® 1.044 181.3	
H Mean Flow over H	Clush-Flo™ 0.706 194.1 Kick-Flo® 1.044 181.3 Mead Range - 144.7	lationship for
Mean Flow over F The hydrological calculations have 1	'lush-Flo™ 0.706 194.1 Kick-Flo® 1.044 181.3 Mead Range - 144.7	
Mean Flow over F The hydrological calculations have I the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util.	<pre>'lush-Flo™ 0.706 194.1 Kick-Flo® 1.044 181.3 Head Range - 144.7 been based on the Head/Discharge research. Should another type of control</pre>	device other
Mean Flow over F The hydrological calculations have t the Hydro-Brake® Optimum as specific	<pre>'lush-Flo™ 0.706 194.1 Kick-Flo® 1.044 181.3 Head Range - 144.7 been based on the Head/Discharge research. Should another type of control</pre>	device other
Mean Flow over F The hydrological calculations have I the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util.	Plush-Flo™ 0.706 194.1 Kick-Flo® 1.044 181.3 Mead Range - 144.7 Deeen based on the Head/Discharge re ed. Should another type of control ised then these storage routing cal	device other culations will be
H Mean Flow over H The hydrological calculations have h the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util invalidated	Clush-Flo™0.706194.1Kick-Flo®1.044181.3Mead Range-144.7been based on the Head/Discharge redanother type of controlised then these storage routing calr(1/s)Depth (m)Flow (1/s)Depth	device other culations will be
Mean Flow over F The hydrological calculations have I the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util. invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 12.8 1.200 0.200 47.5 1.400	Plush-Flo™ 0.706 194.1 Kick-Flo® 1.044 181.3 Mead Range - 144.7 Depen based on the Head/Discharge reded. Should another type of control ised then these storage routing cal 0.1/s) Depth (m) Flow (1/s) Depth 194.1 3.000 303.9 7 209.2 3.500 327.7 7	(m) Flow (1/s) .000 460.9 .500 476.8
Mean Flow over F The hydrological calculations have I the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util. invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 12.8 1.200 0.200 47.5 1.400 0.300 96.9 1.600	Plush-Flo™ 0.706 194.1 Kick-Flo® 1.044 181.3 Mead Range - 144.7 peen based on the Head/Discharge reled. Should another type of control ised then these storage routing cal r (1/s) Depth (m) Flow (1/s) Depth 194.1 3.000 303.9 7 209.2 3.500 327.7 7 223.3 4.000 350.0 8	(m) Flow (1/s) .000 460.9 .500 476.8 .000 492.2
Mean Flow over F The hydrological calculations have I the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util. invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 12.8 1.200 0.200 47.5 1.400 0.300 96.9 1.600 0.400 152.0 1.800	Plush-Flo™ 0.706 194.1 Kick-Flo® 1.044 181.3 Mead Range - 144.7 peen based on the Head/Discharge reled. Should another type of control ised then these storage routing cal r (1/s) Depth (m) Flow 194.1 3.000 303.9 209.2 3.500 327.7 223.3 4.000 350.0 236.6 4.500 370.8	(m) Flow (1/s) .000 460.9 .500 476.8 .000 492.2 .500 507.2
Mean Flow over F The hydrological calculations have I the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util. invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 12.8 1.200 0.200 47.5 1.400 0.300 96.9 1.600 0.400 152.0 1.800 0.500 188.1 2.000	Plush-Flo™ 0.706 194.1 Kick-Flo® 1.044 181.3 Mead Range - 144.7 peen based on the Head/Discharge reled. Should another type of control ised then these storage routing cal r (1/s) Depth (m) Flow (1/s) Depth 194.1 3.000 303.9 7 209.2 3.500 327.7 7 223.3 4.000 350.0 8 236.6 4.500 370.8 8 249.1 5.000 390.5 9	(m) Flow (1/s) .000 460.9 .500 476.8 .000 492.2 .500 507.2 .000 521.7
Mean Flow over F The hydrological calculations have I the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util. invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 12.8 1.200 0.200 47.5 1.400 0.300 96.9 1.600 0.400 152.0 1.800	Plush-Flo™ 0.706 194.1 Kick-Flo® 1.044 181.3 lead Range - 144.7 peen based on the Head/Discharge read should another type of control ised then these storage routing cal r (1/s) Depth (m) Flow (1/s) Depth 194.1 3.000 303.9 7 209.2 3.500 327.7 7 223.3 4.000 350.0 8 249.1 5.000 390.5 9	(m) Flow (1/s) .000 460.9 .500 476.8 .000 492.2 .500 507.2
Mean Flow over F The hydrological calculations have I the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util. invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 12.8 1.200 0.200 47.5 1.400 0.300 96.9 1.600 0.400 152.0 1.800 0.500 188.1 2.000 0.600 192.6 2.200	Plush-Flo™ 0.706 194.1 Kick-Flo® 1.044 181.3 Mead Range - 144.7 peen based on the Head/Discharge reled. Should another type of control ised then these storage routing cal r (1/s) Depth (m) Flow (1/s) Depth 194.1 3.000 303.9 7 209.2 3.500 327.7 7 223.3 4.000 350.0 8 249.1 5.000 390.5 9 261.0 5.500 409.3 9	(m) Flow (1/s) .000 460.9 .500 476.8 .000 492.2 .500 507.2 .000 521.7
Mean Flow over H The hydrological calculations have H the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util. invalidated Depth (m) Flow (1/s) 0.100 12.8 0.200 47.5 0.400 152.0 0.500 188.1 2.000 0.600 192.6 2.200 0.800 193.1	Plush-Flo™ 0.706 194.1 Kick-Flo® 1.044 181.3 Mead Range - 144.7 peen based on the Head/Discharge rested. Should another type of control ised then these storage routing cal r (1/s) Depth (m) Flow (1/s) Depth 194.1 3.000 303.9 7 209.2 3.500 327.7 7 223.3 4.000 350.0 8 249.1 5.000 390.5 9 261.0 5.500 409.3 9 272.4 6.000 427.2	(m) Flow (1/s) .000 460.9 .500 476.8 .000 492.2 .500 507.2 .000 521.7
Mean Flow over H The hydrological calculations have H the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util. invalidated Depth (m) Flow (1/s) 0.100 12.8 0.200 47.5 0.400 152.0 0.500 188.1 2.000 0.600 192.6 2.200 0.800 193.1	Plush-Flo™ 0.706 194.1 Kick-Flo® 1.044 181.3 Mead Range - 144.7 peen based on the Head/Discharge rested. Should another type of control ised then these storage routing cal r (1/s) Depth (m) Flow (1/s) Depth 194.1 3.000 303.9 7 209.2 3.500 327.7 7 223.3 4.000 350.0 8 249.1 5.000 390.5 9 261.0 5.500 409.3 9 272.4 6.000 427.2	(m) Flow (1/s) .000 460.9 .500 476.8 .000 492.2 .500 507.2 .000 521.7
Mean Flow over H The hydrological calculations have H the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util. invalidated Depth (m) Flow (1/s) 0.100 12.8 0.200 47.5 0.400 152.0 0.500 188.1 2.000 0.600 192.6 2.200 0.800 193.1	Plush-Flo™ 0.706 194.1 Kick-Flo® 1.044 181.3 Mead Range - 144.7 peen based on the Head/Discharge rested. Should another type of control ised then these storage routing cal r (1/s) Depth (m) Flow (1/s) Depth 194.1 3.000 303.9 7 209.2 3.500 327.7 7 223.3 4.000 350.0 8 249.1 5.000 390.5 9 261.0 5.500 409.3 9 272.4 6.000 427.2	(m) Flow (1/s) .000 460.9 .500 476.8 .000 492.2 .500 507.2 .000 521.7
Mean Flow over H The hydrological calculations have H the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util. invalidated Depth (m) Flow (1/s) 0.100 12.8 0.200 47.5 0.400 152.0 0.500 188.1 2.000 0.600 192.6 2.200 0.800 193.1	Plush-Flo™ 0.706 194.1 Kick-Flo® 1.044 181.3 Mead Range - 144.7 peen based on the Head/Discharge rested. Should another type of control ised then these storage routing cal r (1/s) Depth (m) Flow (1/s) Depth 194.1 3.000 303.9 7 209.2 3.500 327.7 7 223.3 4.000 350.0 8 249.1 5.000 390.5 9 261.0 5.500 409.3 9 272.4 6.000 427.2	(m) Flow (1/s) .000 460.9 .500 476.8 .000 492.2 .500 507.2 .000 521.7
Mean Flow over H The hydrological calculations have H the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util. invalidated Depth (m) Flow (1/s) 0.100 12.8 0.200 47.5 0.400 152.0 0.500 188.1 2.000 0.600 192.6 2.200 0.800 193.1	Plush-Flo™ 0.706 194.1 Kick-Flo® 1.044 181.3 Mead Range - 144.7 peen based on the Head/Discharge rested. Should another type of control ised then these storage routing cal r (1/s) Depth (m) Flow (1/s) Depth 194.1 3.000 303.9 7 209.2 3.500 327.7 7 223.3 4.000 350.0 8 249.1 5.000 390.5 9 261.0 5.500 409.3 9 272.4 6.000 427.2	(m) Flow (1/s) .000 460.9 .500 476.8 .000 492.2 .500 507.2 .000 521.7
Mean Flow over H The hydrological calculations have H the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util. invalidated Depth (m) Flow (1/s) 0.100 12.8 0.200 47.5 0.400 152.0 0.500 188.1 2.000 0.600 192.6 2.200 0.800 193.1	Plush-Flo™ 0.706 194.1 Kick-Flo® 1.044 181.3 Mead Range - 144.7 peen based on the Head/Discharge rested. Should another type of control ised then these storage routing cal r (1/s) Depth (m) Flow (1/s) Depth 194.1 3.000 303.9 7 209.2 3.500 327.7 7 223.3 4.000 350.0 8 249.1 5.000 390.5 9 261.0 5.500 409.3 9 272.4 6.000 427.2	(m) Flow (1/s) .000 460.9 .500 476.8 .000 492.2 .500 507.2 .000 521.7

Stantec UK Ltd						Page 1
Caversham Bridge House						
Waterman Place						
Reading, RG1 8DN						Micco
Date 20/04/2022 16:55	De	siane	d hy	smaccoll		– Micro
File		2	-	SINACCOLI	-	Drainage
		neckeo		- 1 0000	1	J
Innovyze	Sc	ource	Contr	ol 2020.	. 1	
Summary of Resul	<u>ts for</u>	<u>: 30 y</u>	<u>vear R</u>	<u>eturn Pe</u>	eriod (+55%)	
Storm	Max	Max	Max	Max	Status	
Event	Level	Depth	Contro	ol Volume		
	(m)	(m)	(l/s)	(m³)		
15 min Summer	0 617	0 617	176	6 169.8	ОК	
30 min Summer					Flood Risk	
60 min Summer					Flood Risk	
120 min Summer	0.764	0.764	176.	9 210.1	Flood Risk	
180 min Summer			176.	8 175.2	O K	
240 min Summer				6 147.8		
360 min Summer				5 118.6		
480 min Summer				2 106.0	O K	
600 min Summer 720 min Summer					ОК	
960 min Summer			110. 92.			
1440 min Summer			71.			
2160 min Summer						
2880 min Summer						
4320 min Summer	0.171	0.171	34.	8 46.9	ОК	
5760 min Summer			28.	6 42.3	O K	
7200 min Summer			24.			
8640 min Summer				8 36.6	O K	
10080 min Summer 15 min Winter				7 34.7	O K Flood Risk	
30 min Winter					Flood Risk	
Storm Event	Rain (mm/h		ooded I lume)ischarge Volume	Time-Peak (mins)	
	、 ,	(m ³)	(m³)		
15 min Summer	80.7	88	0.0	284.1	20	
30 min Summer			0.0	397.5	29	
60 min Summer			0.0	529.1	46	
120 min Summer			0.0	685.1	76	
180 min Summer			0.0	791.0	106	
240 min Summer 360 min Summer			0.0 0.0	874.4 1004.7	136 192	
480 min Summer			0.0	1107.5	252	
600 min Summer			0.0	1193.8	312	
720 min Summer			0.0	1268.9	374	
960 min Summer	6.1	94	0.0	1396.9	494	
1440 min Summer			0.0	1599.0	736	
2160 min Summer			0.0	1829.2	1100	
2880 min Summer			0.0	2010.5	1468	
4320 min Summer 5760 min Summer			0.0 0.0	2294.6 2519.8	2176 2888	
7200 min Summer			0.0	2708.8	3648	
8640 min Summer			0.0	2873.5	4360	
10080 min Summer			0.0	3020.6	5088	
15 min Winter			0.0	318.3	20	
30 min Winter	56.4	75	0.0	445.3	30	
	-1000	0.000	_			
(D1982-	2020	TUNON	yze		

Stantec UK							
	ridge House						
Waterman Pl							
Reading, RG							
Date 20/04/	2022 16:55	I	Design	ed by	sma	accoll	-
File		(Checke	d by			
Innovyze			Source	Cont	rol	2020.	1
	<u>Summary of Result</u>	ts fo	or 30	<u>year</u> 1	Retu	ırn Pe	riod (+55%)
	Storm	Max	Max	Маж		Max	Status
	Event	(m)	L Depth (m)			(m ³)	
		(111)	(111)	(1/5	•)	(111)	
	60 min Winter						Flood Risk
	120 min Winter						Flood Risk
	180 min Winter					144.5	O K
	240 min Winter					119.1	
	360 min Winter					100.2	
	480 min Winter					89.2	ОК
	600 min Winter					81.7	ОК
	720 min Winter 960 min Winter					76.1 68.2	
	1440 min Winter					58.7	ОК
	2160 min Winter					50.6	ОК
	2880 min Winter					45.6	0 K
	4320 min Winter	0.144	1 0.144		5.2	39.5	ОК
	5760 min Winter	0.130	0.130	20).8	35.6	0 K
	7200 min Winter				1.8	32.9	O K
	8640 min Winter					30.8	O K
	10080 min Winter	0.100	5 0.106	. 14	1.2	29.2	0 K
	Storm	Ra	in Fl	ooded	Disc	charge	Time-Peak
	Event	(mm/	/hr) V	olume	Vo	lume	(mins)
				(m³)	(m³)	
	60 min Winter	- 37	.547	0.0		592.6	48
	120 min Winter			0.0		767.4	80
	180 min Winter		.707	0.0		885.9	108
	240 min Winter			0.0		979.4	134
	360 min Winter		.880	0.0	-	1125.3	194
	480 min Winter	9.	.821	0.0	-	1240.4	254
	600 min Winter		.469	0.0		1337.1	314
	720 min Winter		.502	0.0		1421.3	374
	960 min Winter		.194	0.0		1564.6	494
	1440 min Winter		.727	0.0		1791.0	736
	2160 min Winter		.604	0.0		2048.8	1092
	2880 min Winter 4320 min Winter		.971 .261	0.0		2251.8 2570.0	1468 2192
	5760 min Winter		.261	0.0		2822.2	2192
	7200 min Winter		.601	0.0		3033.8	3632
	8640 min Winter		.415	0.0		3218.4	4328
	10080 min Winter		.275	0.0		3383.2	5016

Stantec UK Ltd		Page 3
Caversham Bridge House		
Waterman Place		
Reading, RG1 8DN		Mirro
Date 20/04/2022 16:55	Designed by smaccoll	– Micro Drainage
File	Checked by	Diamage
Innovyze	Source Control 2020.1	
<u>Ra</u>	<u>infall Details</u>	
Rainfall Model	FSR Winter Storms	Yes
Return Period (years)	30 Cv (Summer) (0.750
	nd and Ireland Cv (Winter) (
M5-60 (mm) Ratio R	16.000 Shortest Storm (mins) 0.250 Longest Storm (mins) 1	
Summer Storms	Yes Climate Change %	
<u> </u> <u>Tin</u>	ne Area Diagram	
Tota	l Area (ha) 1.880	
	me (mins) Area Time (mins) Area om: To: (ha) From: To: (ha)	
0 4 0.627	4 8 0.627 8 12 0.627	
 	22-2020 Innovyze	
	2 2020 IIIIO A À 72	

Stantec UK Ltd					Page 4
Caversham Bridge House					
Waterman Place					
Reading, RG1 8DN					Micro
Date 20/04/2022 16:55	Desig	ned by sm	accoll		
File	Checke	ed by			Diamaye
Innovyze	Source	e Control	2020.1		
	Model I	<u>Details</u>			
Storage is C	nline Co	over Level	(m) 1.000		
Tank	or Pon	d Structu	ire		
Inv	ert Leve	l (m) 0.00	0		
Depth (m) Area (m²) De	pth (m)	Area (m²)	Depth (m)	Area (m²)	
0.000 275.0	1.000	275.0	1.001	0.0	
<u>Hydro-Brake</u>	<u>Optim</u>	<u>um Outflc</u>	w Control		
Unit Reference			MD-SH	E-0502-177	0-1000-1770
Design Head (m)					1.000
Design Flow (l/s) Flush-Flo™					177.0 Calculated
Objective			Mini	mise upstr	eam storage
Application					Surface
Sump Available					Yes
Diameter (mm) Invert Level (m)					502 0.000
Minimum Outlet Pipe Diameter (mm)	Site Spe	cific Desi	gn (Contact	Hydro Int	
Suggested Manhole Diameter (mm)	-		-	-	
Control Pe	oints	Head (n	n) Flow (1/s	3)	
Design Point (C	alculate	ed) 1.00	176.	9	
	Flush-Fl			9	
	Kick-Fl				
Mean Flow over	Head Kar	ige	- 126.	1	
The hydrological calculations have	been bas	sed on the			
		Sea on the	Head/Discha	arge relati	lonship for
the Hydro-Brake® Optimum as specifi		ould anothe	er type of d	control dev	vice other
		ould anothe	er type of d	control dev	vice other
the Hydro-Brake® Optimum as specifithan a Hydro-Brake Optimum® be util	ised the	ould anothe en these st	er type of o corage routi	control dev .ng calcula	vice other ations will be
the Hydro-Brake® Optimum as specifi than a Hydro-Brake Optimum® be util invalidated Depth (m) Flow (1/s) Depth (m) Flo 0.100 12.6 1.200	ised the w (l/s) 193.4	Depth (m)	er type of d corage routi Flow (1/s) 302.9	Depth (m)	vice other ations will be Flow (1/s) 459.4
the Hydro-Brake® Optimum as specifi than a Hydro-Brake Optimum® be util invalidated Depth (m) Flow (1/s) Depth (m) Flo 0.100 12.6 0.200 46.5 1.400	ised the w (l/s) 193.4 208.5	Depth (m) 3.000 3.500	er type of o corage routi Flow (1/s) 302.9 326.7	Depth (m) 7.000 7.500	vice other ations will be Flow (1/s) 459.4 475.3
the Hydro-Brake® Optimum as specifi than a Hydro-Brake Optimum® be util invalidated Depth (m) Flow (1/s) Depth (m) Flo 0.100 12.6 0.200 46.5 0.300 94.4 1.600	.ised the w (1/s) 193.4 208.5 222.6	Depth (m) 3.000 3.500 4.000	er type of o corage routi Flow (1/s) 302.9 326.7 348.8	Depth (m) 7.000 8.000	rice other ations will be Flow (1/s) 459.4 475.3 490.7
the Hydro-Brake® Optimum as specifi than a Hydro-Brake Optimum® be util invalidated Depth (m) Flow (1/s) Depth (m) Flo 0.100 12.6 0.200 46.5 0.300 94.4 0.400 146.8 1.800	ised the w (1/s) 193.4 208.5 222.6 235.8	Depth (m) 3.000 3.500 4.000 4.500	er type of corage routi Flow (1/s) 302.9 326.7 348.8 369.6	Depth (m) 7.000 7.500 8.000 8.500	rice other ations will be Flow (1/s) 459.4 475.3 490.7 505.6
the Hydro-Brake® Optimum as specifi than a Hydro-Brake Optimum® be util invalidated Depth (m) Flow (1/s) Depth (m) Flo 0.100 12.6 0.200 46.5 0.300 94.4 1.600	.ised the w (1/s) 193.4 208.5 222.6	Depth (m) 3.000 3.500 4.000	er type of o corage routi Flow (1/s) 302.9 326.7 348.8	Depth (m) 7.000 8.000	rice other ations will be Flow (1/s) 459.4 475.3 490.7
the Hydro-Brake® Optimum as specifi than a Hydro-Brake Optimum® be util invalidated Depth (m) Flow (1/s) Depth (m) Floe 0.100 12.6 1.200 0.200 46.5 1.400 0.300 94.4 1.600 0.400 146.8 1.800 0.500 172.9 2.000 0.600 176.4 2.200 0.800 174.3 2.400	ised the (1/s) 193.4 208.5 222.6 235.8 248.3 260.1 271.5	Depth (m) 3.000 3.500 4.000 4.500 5.500 6.000	Flow (1/s) 302.9 326.7 348.8 369.6 389.3 408.0 425.8	Depth (m) 7.000 7.500 8.000 8.500 9.000	rice other ations will be Flow (1/s) 459.4 475.3 490.7 505.6 520.0
the Hydro-Brake® Optimum as specifi than a Hydro-Brake Optimum® be util invalidated Depth (m) Flow (1/s) Depth (m) Flo 0.100 12.6 1.200 0.200 46.5 1.400 0.300 94.4 1.600 0.400 146.8 1.800 0.500 172.9 2.000 0.600 176.4 2.200	ised the (1/s) 193.4 208.5 222.6 235.8 248.3 260.1	Depth (m) 3.000 3.500 4.000 4.500 5.500 6.000	Flow (1/s) 302.9 326.7 348.8 369.6 389.3 408.0	Depth (m) 7.000 7.500 8.000 8.500 9.000	rice other ations will be Flow (1/s) 459.4 475.3 490.7 505.6 520.0
the Hydro-Brake® Optimum as specifi than a Hydro-Brake Optimum® be util invalidated Depth (m) Flow (1/s) Depth (m) Floe 0.100 12.6 1.200 0.200 46.5 1.400 0.300 94.4 1.600 0.400 146.8 1.800 0.500 172.9 2.000 0.600 176.4 2.200 0.800 174.3 2.400	ised the (1/s) 193.4 208.5 222.6 235.8 248.3 260.1 271.5	Depth (m) 3.000 3.500 4.000 4.500 5.500 6.000	Flow (1/s) 302.9 326.7 348.8 369.6 389.3 408.0 425.8	Depth (m) 7.000 7.500 8.000 8.500 9.000	rice other ations will be Flow (1/s) 459.4 475.3 490.7 505.6 520.0
the Hydro-Brake® Optimum as specifi than a Hydro-Brake Optimum® be util invalidated Depth (m) Flow (1/s) Depth (m) Floe 0.100 12.6 1.200 0.200 46.5 1.400 0.300 94.4 1.600 0.400 146.8 1.800 0.500 172.9 2.000 0.600 176.4 2.200 0.800 174.3 2.400	ised the (1/s) 193.4 208.5 222.6 235.8 248.3 260.1 271.5	Depth (m) 3.000 3.500 4.000 4.500 5.500 6.000	Flow (1/s) 302.9 326.7 348.8 369.6 389.3 408.0 425.8	Depth (m) 7.000 7.500 8.000 8.500 9.000	rice other ations will be Flow (1/s) 459.4 475.3 490.7 505.6 520.0
the Hydro-Brake® Optimum as specifi than a Hydro-Brake Optimum® be util invalidated Depth (m) Flow (1/s) Depth (m) Floe 0.100 12.6 1.200 0.200 46.5 1.400 0.300 94.4 1.600 0.400 146.8 1.800 0.500 172.9 2.000 0.600 176.4 2.200 0.800 174.3 2.400	ised the (1/s) 193.4 208.5 222.6 235.8 248.3 260.1 271.5	Depth (m) 3.000 3.500 4.000 4.500 5.500 6.000	Flow (1/s) 302.9 326.7 348.8 369.6 389.3 408.0 425.8	Depth (m) 7.000 7.500 8.000 8.500 9.000	rice other ations will be Flow (1/s) 459.4 475.3 490.7 505.6 520.0
the Hydro-Brake® Optimum as specifi than a Hydro-Brake Optimum® be util invalidated Depth (m) Flow (1/s) Depth (m) Floe 0.100 12.6 1.200 0.200 46.5 1.400 0.300 94.4 1.600 0.400 146.8 1.800 0.500 172.9 2.000 0.600 176.4 2.200 0.800 174.3 2.400	ised the (1/s) 193.4 208.5 222.6 235.8 248.3 260.1 271.5	Depth (m) 3.000 3.500 4.000 4.500 5.500 6.000	Flow (1/s) 302.9 326.7 348.8 369.6 389.3 408.0 425.8	Depth (m) 7.000 7.500 8.000 8.500 9.000	rice other ations will be Flow (1/s) 459.4 475.3 490.7 505.6 520.0
the Hydro-Brake® Optimum as specifi than a Hydro-Brake Optimum® be util invalidated Depth (m) Flow (1/s) Depth (m) Floe 0.100 12.6 1.200 0.200 46.5 1.400 0.300 94.4 1.600 0.400 146.8 1.800 0.500 172.9 2.000 0.600 176.4 2.200 0.800 174.3 2.400	ised the (1/s) 193.4 208.5 222.6 235.8 248.3 260.1 271.5	Depth (m) 3.000 3.500 4.000 4.500 5.500 6.000	Flow (1/s) 302.9 326.7 348.8 369.6 389.3 408.0 425.8	Depth (m) 7.000 7.500 8.000 8.500 9.000	rice other ations will be Flow (1/s) 459.4 475.3 490.7 505.6 520.0
the Hydro-Brake® Optimum as specifi than a Hydro-Brake Optimum® be util invalidated Depth (m) Flow (1/s) Depth (m) Flo 0.100 12.6 1.200 0.200 46.5 1.400 0.300 94.4 1.600 0.400 146.8 1.800 0.500 172.9 2.000 0.600 176.4 2.200 0.800 174.3 2.400 1.000 176.9 2.600	ised the w (1/s) 193.4 208.5 222.6 235.8 248.3 260.1 271.5 282.3	Depth (m) 3.000 3.500 4.000 4.500 5.500 6.000	er type of o corage routi Flow (1/s) 302.9 326.7 348.8 369.6 389.3 408.0 425.8 443.0	Depth (m) 7.000 7.500 8.000 8.500 9.000	rice other ations will be Flow (1/s) 459.4 475.3 490.7 505.6 520.0

	ł						Page 1
Caversham Brid	lge House						
Waterman Place	-						
Reading, RG1 8							Misso
Date 20/04/202			esiana	ed by sr	naccoll	1	– Micro
	22 17.14		2	-	liaccori	-	Drainag
File			hecked			1	J
Innovyze		S	ource	Contro	1 2020.	. ⊥	
		c	100	5			
51	ummary of Result	<u>is ior</u>	<u> </u>	<u>year ke</u>	turn Pe	eriod (+55%)	
	Storm	Max	Max	Max	Max	Status	
	Event		-	Control			
		(m)	(m)	(l/s)	(m³)		
	15 min Summer	0.602	0.602	225.1	433.5	ОК	
	30 min Summer					Flood Risk	
	60 min Summer	0.887	0.887	259.6	638.3	Flood Risk	
	120 min Summer	0.909	0.909	259.6	654.3	Flood Risk	
	180 min Summer	0.842	0.842	259.5	606.1	Flood Risk	
	240 min Summer	0.768	0.768	259.6	552.9	Flood Risk	
	360 min Summer				478.6		
	480 min Summer				427.1		
	600 min Summer				388.4		
	720 min Summer				358.6		
	960 min Summer				316.5		
	1440 min Summer 2160 min Summer				268.5		
	2880 min Summer				228.7 204.5		
	4320 min Summer				174.6	0 K	
	5760 min Summer				156.3		
	7200 min Summer				143.4		
	8640 min Summer	0.186	0.186	39.3	133.8	0 K	
	10080 min Summer	0.175	0.175	35.3	126.2	0 K	
	15 min Winter	0.670	0.670	246.4	482.6	O K	
	30 min Winter	0.873	0.873	259.3	628.3	Flood Risk	
	Storm	Rai	n Flo	ooded Di	scharge	Time-Peak	
	Storm Event	Rai (mm/)			scharge Volume	Time-Peak (mins)	
			hr) Vo		-		
	Event 15 min Summe	(mm/	hr) Vo (546	olume V m ³)	volume (m ³) 559.8	(mins) 21	
	Event 15 min Summe 30 min Summe	(mm/ r 104. r 73.	hr) Vo (546 678	lume V m ³) 0.0 0.0	volume (m ³) 559.8 790.9	(mins) 21 30	
	Event 15 min Summe 30 min Summe 60 min Summe	(mm/ r 104. r 73. r 48.	hr) Vo (546 678 824	lume V m ³) 0.0 0.0 0.0	Volume (m ³) 559.8 790.9 1052.2	(mins) 21 30 48	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe	(mm/ r 104. r 73. r 48. r 31.	hr) Vo (546 678 824 340	lume V m ³) 0.0 0.0 0.0 0.0	Volume (m ³) 559.8 790.9 1052.2 1351.5	(mins) 21 30 48 82	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe	(mm/ r 104. r 73. r 48. r 31. r 23.	hr) Vo (546 678 824 340 964	lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0	701ume (m ³) 559.8 790.9 1052.2 1351.5 1550.4	(mins) 21 30 48 82 114	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe	(mm/ r 104. r 73. r 48. r 31. r 23. r 19.	hr) Vo (546 678 824 340 964 773	lume V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Yolume (m ³) 559.8 790.9 1052.2 1351.5 1550.4 1705.9	(mins) 21 30 48 82 114 142	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe	(mm/ r 104. r 73. r 48. r 31. r 23. r 19. r 15.	<pre>hr) Vo 546 678 824 340 964 773 033</pre>	lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Yolume (m ³) 559.8 790.9 1052.2 1351.5 1550.4 1705.9 1945.7	(mins) 21 30 48 82 114 142 202	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe	(mm/) r 104. r 73. r 48. r 31. r 23. r 19. r 15. r 12.	<pre>hr) Vo 546 678 824 340 964 773 033 359</pre>	lume V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Yolume (m ³) 559.8 790.9 1052.2 1351.5 1550.4 1705.9	(mins) 21 30 48 82 114 142	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe	(mm/ r 104. r 73. r 48. r 31. r 23. r 19. r 15. r 12. r 10.	<pre>hr) Vo 546 678 824 340 964 773 033 359</pre>	lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Colume (m ³) 559.8 790.9 1052.2 1351.5 1550.4 1705.9 1945.7 2133.0	(mins) 21 30 48 82 114 142 202 264	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe 600 min Summe	(mm/ r 104. r 73. r 48. r 31. r 23. r 19. r 15. r 12. r 10. r 9.	hr) Vo 546 678 824 340 964 773 033 359 611	lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Colume (m ³) 559.8 790.9 1052.2 1351.5 1550.4 1705.9 1945.7 2133.0 2289.1	(mins) 21 30 48 82 114 142 202 264 322	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe 480 min Summe 600 min Summe	(mm/ r 104. r 73. r 48. r 31. r 23. r 19. r 15. r 12. r 10. r 9. r 7.	hr) Vo (546 678 824 340 964 773 033 359 611 365	lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Colume (m ³) 559.8 790.9 1052.2 1351.5 1550.4 1705.9 1945.7 2133.0 2289.1 2424.4	(mins) 21 30 48 82 114 142 202 264 322 382	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 1440 min Summe	(mm/ r 104. r 73. r 48. r 31. r 23. r 19. r 15. r 12. r 10. r 9. r 7. r 5. r 4.	hr) Vo (546 678 824 340 964 773 033 359 611 365 687 819 399	Lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Colume (m ³) 559.8 790.9 1052.2 1351.5 1550.4 1705.9 1945.7 2133.0 2289.1 2424.4 2653.4 3012.4 3419.3	(mins) 21 30 48 82 114 142 202 264 322 382 502 742 1104	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 1440 min Summe 2800 min Summe	(mm/ r 104. r 73. r 48. r 31. r 23. r 19. r 15. r 12. r 10. r 9. r 7. r 5. r 4. r 3.	hr) Vo 546 678 824 340 964 773 033 359 611 365 687 819 399 603	Lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Colume (m ³) 559.8 790.9 1052.2 1351.5 1550.4 1705.9 1945.7 2133.0 2289.1 2424.4 2653.4 3012.4 3419.3 3733.8	(mins) 21 30 48 82 114 142 202 264 322 382 502 742 1104 1472	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 1440 min Summe 2800 min Summe 2800 min Summe	(mm/ r 104. r 73. r 48. r 31. r 23. r 19. r 15. r 12. r 10. r 9. r 7. r 5. r 4. r 3. r 3. r 2.	hr) Vo 546 678 824 340 964 773 033 359 611 365 687 819 399 603 716	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Colume (m ³) 559.8 790.9 1052.2 1351.5 1550.4 1705.9 1945.7 2133.0 2289.1 2424.4 2653.4 3012.4 3419.3 3733.8 4219.6	(mins) 21 30 48 82 114 142 202 264 322 382 502 742 1104 1472 2204	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 1440 min Summe 2480 min Summe 2400 min Summe	(mm/ r 104. r 73. r 48. r 31. r 23. r 19. r 15. r 12. r 10. r 9. r 7. r 5. r 4. r 3. r 2. r 2.	hr) Vo 546 678 824 340 964 773 033 359 611 365 687 819 399 603 716 221	Lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Colume (m ³) 559.8 790.9 1052.2 1351.5 1550.4 1705.9 1945.7 2133.0 2289.1 2424.4 2653.4 3012.4 3012.4 3419.3 3733.8 4219.6 4603.9	(mins) 21 30 48 82 114 142 202 264 322 382 502 742 1104 1472 2204 2936	
	Event Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 1440 min Summe 280 min Summe 280 min Summe 5760 min Summe 7200 min Summe	(mm/ r 104. r 73. r 48. r 31. r 23. r 19. r 15. r 12. r 10. r 7. r 5. r 7. r 4. r 3. r 2. r 1. r 10. r	hr) Vo 546 678 824 340 964 773 033 359 611 365 687 819 399 603 716 221 899	Lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Colume (m ³) 559.8 790.9 1052.2 1351.5 1550.4 1705.9 1945.7 2133.0 2289.1 2424.4 2653.4 3012.4 3012.4 3419.3 3733.8 4219.6 4603.9 4921.7	(mins) 21 30 48 82 114 142 202 264 322 382 502 742 1104 1472 2204 2936 3672	
	Event Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 1440 min Summe 2480 min Summe 2400 min Summe	(mm/) r 104. r 73. r 48. r 31. r 23. r 19. r 15. r 10. r 10. r 10. r 5. r 3. r 2. r 3. r 2. r 10. r 2. r 10. r 2. r 10. r	hr) Vo 546 678 824 340 964 773 033 359 611 365 687 819 399 603 716 221 899 672	Lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Colume (m ³) 559.8 790.9 1052.2 1351.5 1550.4 1705.9 1945.7 2133.0 2289.1 2424.4 2653.4 3012.4 3012.4 3419.3 3733.8 4219.6 4603.9 4921.7 5197.1	(mins) 21 30 48 82 114 142 202 264 322 382 502 742 1104 1472 2204 2936 3672 4400	
	Event I5 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 1440 min Summe 2480 min Summe 2400 min Summe 240 min Summe 240 min Summe 240 min Summe 3400 min Summe	(mm/) r 104. r 73. r 48. r 31. r 23. r 19. r 15. r 12. r 10. r 10. r 5. r 3. r 2. r 2. r 10. r 2. r 10. r 3. r 10. r 11. r 10. r 10.	hr) Vo (546 678 824 340 964 773 033 359 611 365 687 819 399 603 716 221 899 672 501	Lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Colume (m ³) 559.8 790.9 1052.2 1351.5 1550.4 1705.9 1945.7 2133.0 2289.1 2424.4 2653.4 3012.4 3012.4 3419.3 3733.8 4219.6 4603.9 4921.7 5197.1 5441.3	(mins) 21 30 48 82 114 142 202 264 322 382 502 742 1104 1472 2204 2936 3672 4400 5136	
	Event Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 1440 min Summe 2480 min Summe 2400 min Summe	(mm/) r 104. r 73. r 48. r 31. r 23. r 19. r 15. r 10. r 10. r 5. r 4. r 3. r 2. r 10. r 2. r 10. r 10.	hr) Vo 546 678 824 340 964 773 033 359 611 365 687 819 399 603 716 221 899 603 716 221 899 672 501 546	Lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Colume (m ³) 559.8 790.9 1052.2 1351.5 1550.4 1705.9 1945.7 2133.0 2289.1 2424.4 2653.4 3012.4 3012.4 3419.3 3733.8 4219.6 4603.9 4921.7 5197.1	(mins) 21 30 48 82 114 142 202 264 322 382 502 742 1104 1472 2204 2936 3672 4400	

60		Che	ecked	-	naccoll	
eading, RG1 8DN ate 20/04/2022 17: .le novyze <u>Summary</u> 60	of Result	Che	ecked	l by	naccoll	-
Reading, RG1 8DN Date 20/04/2022 17: File Innovyze <u>Summary</u> 60	of Result	Che	ecked	l by	naccoll	-
Date 20/04/2022 17: File Innovyze <u>Summary</u> 60	of Result	Che	ecked	l by	naccoll	L
File Innovyze <u>Summary</u> 60	of Result	Che	ecked	l by		L
Innovyze <u>Summary</u> 60		Soi		-		
<u>Summary</u> 60			urce	Control		
60		s for		CONCLOI	1 2020.	.1
60		5 101	100 .	DOT DO	turn D	oriod (+55
	0 to a mm		<u>100 y</u>	<u>eal ne</u>	<u>culli re</u>	<u>=====================================</u>
	Storm	Max	Max	Max	Max	Status
	Event	Level I	epth	Control	Volume	
		(m)	(m)	(1/s)	(m³)	
	min Winter	0 988 0	1 988	259.1	711 7	Flood Risk
120	min Winter					Flood Risk
180	min Winter					Flood Risk
	min Winter					Flood Risk
	min Winter min Winter				515.4 425.1	
	min Winter				367.2	
	min Winter				328.4	
	min Winter				301.2	
	min Winter				265.7	
	min Winter				224.5	
	min Winter			74.3		ОК
	min Winter					
	min Winter			46.1		0 K
	min Winter				130.8	
	min Winter				120.3	
	min Winter				112.3	
10080	min Winter	0.147 ().147	25.5	106.2	ОК
	Storm	Rain	Flo	oded Dis	scharge	Time-Peak
	Event	(mm/hr	:) Vo]	lume V	olume	(mins)
			(1	m³)	(m³)	
6	0 min Winter	48.82	24	0.0	1178.8	52
12	0 min Winter	31.34	0	0.0	1514.0	88
	0 min Winter			0.0	1736.7	118
	0 min Winter			0.0	1911.0	
	0 min Winter			0.0	2179.5	
	0 min Winter			0.0	2389.3	
	0 min Winter			0.0	2564.2	326
	0 min Winter			0.0	2715.7	
	0 min Winter			0.0	2972.2	506
	0 min Winter			0.0	3374.5	746
	0 min Winter 0 min Winter			0.0	3829.8	
	0 min Winter			0.0	4182.1	
	0 min Winter			0.0	4726.7	
	0 min Winter			0.0	5156.5	
	0 min Winter			0.0	5512.5	
	0 min Winter			0.0	5821.1	4352
	0 min Winter	1.50		0.0	6095.0	5136

Caversham Bridge House Waterman Place Reading, RG1 8DN Date 20/04/2022 17:14 File Innovyze Rainfall Model Rainfall Details Rainfall Model Return Period (years) Return Period (years) Region Scotland and Ireland M5-60 (mm) Ratio R Summer Storms Climate Change % Climate Change % Climat	Stantec UK Ltd		-		Page 3
Reading, RG1 8DN Designed by smaccoll Microbian Date 20/04/2022 17:14 Designed by smaccoll Checked by File Checked by Designed by smaccoll Designed by smaccoll Innovyze Source Control 2020.1 Source Control 2020.1 Designed by smaccoll Designed by smaccoll Rainfall Model FSR Winter Storms Yes Return Period (years) 100 Cv (Summer) 0.750 Region Scotland and Ireland Cv (Winter) 0.840 M5-60 (mm) 16.000 Shortest Storm (mins) 15 Ratio R 0.250 Longest Storm (mins) 15 Summer Storms Yes Climate Change % +55 Time Area (ha) 2.880 Time (mins) Area Time (mins) Area From: To: (ha)		House			
Date 20/04/2022 17:14 Designed by smaccoll Checked by Designed by smaccoll Checked by Innovyze Source Control 2020.1 Rainfall Model FSR Winter Storms Yes Return Period (years) 100 Cv (Summer) 0.750 Region Scotland and Ireland Cv (Winter) 0.840 M5-60 (mm) 16.000 Shortest Storm (mins) 15 Ratio R 0.250 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +55 Time (mins) Area Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha)	Waterman Place				
Bate 20/04/2022 17.14 Designed by smaccoll File Checked by Innovyze Source Control 2020.1 Rainfall Model Rainfall Details Return Period (years) 100 Cv (Summer) 0.750 Region Scotland and Ireland Cv (Winter) 0.840 M5-60 (mm) 16.000 Shortest Storm (mins) Ratio R 0.250 Longest Storm (mins) Summer Storms Yes Climate Change % +55 Time Area Diagram Total Area (ha) 2.880 Time (mins) Area Time (mins) Area From: To: From: To: Time (mins) Area Time (mins) Area From: To: Total Area (ha) From: To: (ha)					Mirro
Innovyze Source Control 2020.1 Rainfall Model FSR Winter Storms Yes Return Period (years) 100 Cv (Summer) 0.750 Region Scotland and Ireland Cv (Winter) 0.840 M5-60 (mm) 16.000 Shortest Storm (mins) 15 Ratio R 0.250 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +55 Time Area Diagram Total Area (ha) Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha)		17:14	Designed by	smaccoll	Dcainage
Rainfall Details Rainfall Model FSR Winter Storms Yes Return Period (years) 100 Cv (Summer) 0.750 Region Scotland and Ireland Cv (Winter) 0.840 M5-60 (mm) 16.000 Shortest Storm (mins) 15 Ratio R 0.250 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +55 Time Area Diagram Total Area (ha) 2.880 Time (mins) Area From: To: Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha)	File		Checked by		Diamada
Rainfall ModelFSRWinter StormsYesReturn Period (years)100Cv (Summer) 0.750Region Scotland and IrelandCv (Winter) 0.840M5-60 (mm)16.000 Shortest Storm (mins)15Ratio R0.250 Longest Storm (mins)10080Summer StormsYesClimate Change %Time Area DiagramTotal Area (ha)2.880Time (mins) AreaFrom:To:Time (mins) AreaFrom:To:To:To:KaraTo:Kara </td <td>Innovyze</td> <td></td> <td>Source Cont</td> <td>rol 2020.1</td> <td></td>	Innovyze		Source Cont	rol 2020.1	
Return Period (years) 100 Cv (Summer) 0.750 Region Scotland and Ireland Cv (Winter) 0.840 M5-60 (mm) 16.000 Shortest Storm (mins) 15 Ratio R 0.250 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +55 Time Area Diagram Total Area (ha) 2.880 Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha)		<u>Ra</u>	ainfall Detai	<u>ls</u>	
Return Period (years) 100 Cv (Summer) 0.750 Region Scotland and Ireland Cv (Winter) 0.840 M5-60 (mm) 16.000 Shortest Storm (mins) 15 Ratio R 0.250 Longest Storm (mins) 10000 Summer Storms Yes Climate Change % +55 Time Area Diagram Total Area (ha) 2.880 Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha)					
Total Area (ha) 2.880 Time (mins) Area From: To: (ha) From: To: (ha) From: To: (ha)	Return Pe:	riod (years) Region Scotla M5-60 (mm) Ratio R	100 and and Ireland 16.000 0.250	Cv (S Cv (V Shortest Storm Longest Storm	Summer) 0.750 Winter) 0.840 (mins) 15 (mins) 10080
Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha) From: To: (ha)		Ti	<u>me Area Diag</u> :	<u>cam</u>	
From: To: (ha) From: To: (ha) From: To: (ha)		Tot	al Area (ha) 2	.880	
0 4 0.960 4 8 0.960 8 12 0.960					
		0 4 0.960	4 8 0.9	8 12	0.960
©1982-2020 Innovyze					

					Page 4			
Caversham Bridge House								
Waterman Place								
Reading, RG1 8DN					Micro			
Date 20/04/2022 17:14	Design	ed by sm	accoll					
File	Checke	ed by			Diamaye			
Innovyze								
	Model D	<u>etails</u>						
Storage is C	nline Co [.]	ver Level	(m) 1.000					
Tank	or Pond	d Structu	ire					
Inv	ert Level	(m) 0.00	0					
Depth (m) Area (m²) De	pth (m) 1	Area (m²)	Depth (m)	Area (m²)				
0.000 720.0	1.000	720.0	1.001	0.0				
<u>Hydro-Brake</u>	<u>® Optimu</u>	<u>ım Outflo</u>	w Control					
Unit Reference			MD-CH	E-0520-261	0-1200-2610			
Design Head (m) Design Flow (l/s)					1.200 261.0			
Flush-Flo™					Calculated			
Objective			Mini	mise upstre	eam storage			
Application					Surface			
Sump Available					Yes			
Diameter (mm) Invert Level (m)					520 0.000			
Minimum Outlet Pipe Diameter (mm)	Site Spec	cific Desi	gn (Contact	Hydro Inte				
Suggested Manhole Diameter (mm)	Site Spec	cific Desi	gn (Contact	Hydro Inte	ernational)			
Control Pe	oints	Head (m	1) Flow (1/5	3)				
Decian Point /C	alculated	d) 1.20	0 260.	. 7				
Design Poline (C								
	Flush-Flo		57 259.					
	Kick-Flo	o® 0.91	57 259. .4 231.	. 5				
	Kick-Flo	o® 0.91	57 259.	. 5				
Mean Flow over The hydrological calculations have	Kick-Flo Head Rang been bas	o® 0.91 ge ed on the	57 259. 4 231. - 172. Head/Discha	.5 .2 arge relati				
Mean Flow over The hydrological calculations have the Hydro-Brake® Optimum as specif:	Kick-Flo Head Rand been bas ed. Sho	o® 0.91 ge ed on the uld anothe	7 259. 4 231. - 172. Head/Discharter type of o	.5 .2 arge relati control dev	vice other			
Mean Flow over The hydrological calculations have	Kick-Flo Head Rand been bas ed. Sho	o® 0.91 ge ed on the uld anothe	7 259. 4 231. - 172. Head/Discharter type of o	.5 .2 arge relati control dev	vice other			
Mean Flow over The hydrological calculations have the Hydro-Brake® Optimum as specif: than a Hydro-Brake Optimum® be uti:	Kick-Flo Head Rand been bas ed. Sho ised the	o® 0.91 ge ed on the uld anothe n these st	7 259. 4 231. - 172. Head/Discha er type of c	5 2 arge relati control dev ing calcula	vice other ations will be			
Mean Flow over The hydrological calculations have the Hydro-Brake® Optimum as specif: than a Hydro-Brake Optimum® be util invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 12.2 1.200	Kick-Flo Head Rand been bas ed. Sho ised the	o® 0.91 ge ed on the uld anothe n these st Depth (m) 3.000	7 259. 4 231. - 172. Head/Discha er type of c	5 2 arge relati control dev ing calcula Depth (m) 7.000	vice other ations will be Flow (1/s) 620.8			
Mean Flow over The hydrological calculations have the Hydro-Brake® Optimum as specifi- than a Hydro-Brake Optimum® be util- invalidated Depth (m) Flow (1/s) Depth (m) Flom 0.100 12.2 1.200 0.200 44.9 1.400	Kick-Flo Head Rang been bas ed. Sho ised the w (1/s) 260.7 281.3	o® 0.91 ge ed on the uld anothe n these st Depth (m) 3.000 3.500	7 259. 4 231. - 172. Head/Discha er type of c corage rout: Flow (1/s) 409.2 441.4	5 2 arge relati control dev ing calcula Depth (m) 7.000 7.500	rice other ations will be Flow (1/s) 620.8 642.3			
Mean Flow over The hydrological calculations have the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be utilinvalidated Depth (m) Flow (1/s) Depth (m) Flom 0.100 12.2 1.200 0.200 44.9 1.400 0.300 91.6 1.600	Kick-Flo Head Rang been bas ed. Sho ised the w (1/s) 260.7 281.3 300.3	o® 0.91 ge ed on the uld anothe n these st Depth (m) 3.000 3.500 4.000	<pre>57 259. 4 231. - 172. Head/Discha er type of corage rout: Flow (1/s) 409.2 441.4 471.4</pre>	5 2 arge relati control dev ing calcula Depth (m) 7.000 7.500 8.000	rice other ations will be Flow (1/s) 620.8 642.3 663.0			
Mean Flow over The hydrological calculations have the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be utilinvalidated Depth (m) Flow (1/s) Depth (m) Flom 0.100 12.2 1.200 0.200 44.9 1.400 0.300 91.6 1.600 0.400 143.9 1.800	Kick-Flo Head Rang been bas ed. Sho ised the w (1/s) 260.7 281.3 300.3 318.3	o® 0.91 ge ed on the uld anothe n these st Depth (m) 3.000 3.500 4.000 4.500	<pre>57 259. 4 231. - 172. Head/Discha er type of corage rout: Flow (1/s) 409.2 441.4 471.4 499.5</pre>	5 2 arge relati control dev ing calcula Depth (m) 7.000 7.500 8.000 8.500	rice other ations will be Flow (1/s) 620.8 642.3 663.0 683.1			
Mean Flow over The hydrological calculations have the Hydro-Brake® Optimum as specif: than a Hydro-Brake Optimum® be utilinvalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 12.2 0.200 44.9 0.300 91.6 0.400 143.9 0.500 188.4	Kick-Flo Head Rang been bas ed. Sho ised the w (1/s) 1 260.7 281.3 300.3 318.3 335.2	o® 0.91 ge ed on the uld anothe n these st Depth (m) 3.000 3.500 4.000	<pre>57 259. 4 231. - 172. Head/Discha er type of corage rout: Flow (1/s) 409.2 441.4 471.4 499.5 526.1</pre>	5 2 arge relati control dev ing calcula Depth (m) 7.000 7.500 8.000	rice other ations will be Flow (1/s) 620.8 642.3 663.0 683.1 702.6			
Mean Flow over The hydrological calculations have the Hydro-Brake® Optimum as specif: than a Hydro-Brake Optimum® be utilinvalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 12.2 0.200 44.9 0.300 91.6 0.400 143.9 0.500 188.4	Kick-Flo Head Rang been bas ed. Sho ised the w (1/s) 260.7 281.3 300.3 318.3	o® 0.91 ge ed on the uld anothe n these st Depth (m) 3.000 3.500 4.000 4.500 5.000	<pre>57 259. 4 231. - 172. Head/Discha er type of corage rout: Flow (1/s) 409.2 441.4 471.4 499.5</pre>	5 2 arge relati control dev ing calcula Depth (m) 7.000 7.500 8.000 8.500 9.000	rice other ations will be Flow (1/s) 620.8 642.3 663.0 683.1			
Mean Flow over The hydrological calculations have the Hydro-Brake® Optimum as specifi- than a Hydro-Brake Optimum® be utili invalidated Depth (m) Flow (1/s) Depth (m) Floe 0.100 12.2 0.200 44.9 0.300 91.6 0.400 143.9 0.500 188.4 0.600 224.3	Kick-Flo Head Rang been bas ed. Sho ised the w (1/s) 1 260.7 281.3 300.3 318.3 335.2 351.3	o® 0.91 ge ed on the uld anothe n these st Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500	<pre>57 259. 4 231. - 172. Head/Dischar er type of corage rout: Flow (1/s) 409.2 441.4 471.4 499.5 526.1 551.4</pre>	5 2 arge relati control dev ing calcula Depth (m) 7.000 7.500 8.000 8.500 9.000	rice other ations will be Flow (1/s) 620.8 642.3 663.0 683.1 702.6			
Mean Flow over The hydrological calculations have the Hydro-Brake® Optimum as specifi- than a Hydro-Brake Optimum® be utili invalidated Depth (m) Flow (1/s) Depth (m) Floe 0.100 12.2 0.200 44.9 0.300 91.6 0.400 143.9 0.500 188.4 0.600 224.3 0.800 256.2	Kick-Flo Head Rang been bas ed. Sho ised the w (1/s) 1 260.7 281.3 300.3 318.3 335.2 351.3 366.6	o® 0.91 ge ed on the uld anothe n these st Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>57 259. 4 231. - 172. Head/Dischar er type of corage rout: Flow (1/s) 409.2 441.4 471.4 499.5 526.1 551.4 575.5</pre>	5 2 arge relati control dev ing calcula Depth (m) 7.000 7.500 8.000 8.500 9.000	rice other ations will be Flow (1/s) 620.8 642.3 663.0 683.1 702.6			
Mean Flow over The hydrological calculations have the Hydro-Brake® Optimum as specifi- than a Hydro-Brake Optimum® be utili invalidated Depth (m) Flow (1/s) Depth (m) Floe 0.100 12.2 0.200 44.9 0.300 91.6 0.400 143.9 0.500 188.4 0.600 224.3 0.800 256.2	Kick-Flo Head Rang been bas ed. Sho ised the w (1/s) 1 260.7 281.3 300.3 318.3 335.2 351.3 366.6	o® 0.91 ge ed on the uld anothe n these st Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>57 259. 4 231. - 172. Head/Dischar er type of corage rout: Flow (1/s) 409.2 441.4 471.4 499.5 526.1 551.4 575.5</pre>	5 2 arge relati control dev ing calcula Depth (m) 7.000 7.500 8.000 8.500 9.000	rice other ations will be Flow (1/s) 620.8 642.3 663.0 683.1 702.6			
Mean Flow over The hydrological calculations have the Hydro-Brake® Optimum as specifi- than a Hydro-Brake Optimum® be utili invalidated Depth (m) Flow (1/s) Depth (m) Floe 0.100 12.2 0.200 44.9 0.300 91.6 0.400 143.9 0.500 188.4 0.600 224.3 0.800 256.2	Kick-Flo Head Rang been bas ed. Sho ised the w (1/s) 1 260.7 281.3 300.3 318.3 335.2 351.3 366.6	o® 0.91 ge ed on the uld anothe n these st Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>57 259. 4 231. - 172. Head/Dischar er type of corage rout: Flow (1/s) 409.2 441.4 471.4 499.5 526.1 551.4 575.5</pre>	5 2 arge relati control dev ing calcula Depth (m) 7.000 7.500 8.000 8.500 9.000	rice other ations will be Flow (1/s) 620.8 642.3 663.0 683.1 702.6			
Mean Flow over The hydrological calculations have the Hydro-Brake® Optimum as specifi- than a Hydro-Brake Optimum® be utili invalidated Depth (m) Flow (1/s) Depth (m) Floe 0.100 12.2 0.200 44.9 0.300 91.6 0.400 143.9 0.500 188.4 0.600 224.3 0.800 256.2	Kick-Flo Head Rang been bas ed. Sho ised the w (1/s) 1 260.7 281.3 300.3 318.3 335.2 351.3 366.6	o® 0.91 ge ed on the uld anothe n these st Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>57 259. 4 231. - 172. Head/Discha er type of corage rout: Flow (1/s) 409.2 441.4 471.4 499.5 526.1 551.4 575.5</pre>	5 2 arge relati control dev ing calcula Depth (m) 7.000 7.500 8.000 8.500 9.000	rice other ations will be Flow (1/s) 620.8 642.3 663.0 683.1 702.6			
Mean Flow over The hydrological calculations have the Hydro-Brake® Optimum as specifi- than a Hydro-Brake Optimum® be utili invalidated Depth (m) Flow (1/s) Depth (m) Floe 0.100 12.2 0.200 44.9 0.300 91.6 0.400 143.9 0.500 188.4 0.600 224.3 0.800 256.2	Kick-Flo Head Rang been bas ed. Sho ised the w (1/s) 1 260.7 281.3 300.3 318.3 335.2 351.3 366.6	o® 0.91 ge ed on the uld anothe n these st Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>57 259. 4 231. - 172. Head/Discha er type of corage rout: Flow (1/s) 409.2 441.4 471.4 499.5 526.1 551.4 575.5</pre>	5 2 arge relati control dev ing calcula Depth (m) 7.000 7.500 8.000 8.500 9.000	rice other ations will be Flow (1/s) 620.8 642.3 663.0 683.1 702.6			
Mean Flow over The hydrological calculations have the Hydro-Brake® Optimum as specifi- than a Hydro-Brake Optimum® be utili invalidated Depth (m) Flow (1/s) Depth (m) Floe 0.100 12.2 0.200 44.9 0.300 91.6 0.400 143.9 0.500 188.4 0.600 224.3 0.800 256.2	Kick-Flo Head Rang been bas ed. Sho ised the w (1/s) 1 260.7 281.3 300.3 318.3 335.2 351.3 366.6	o® 0.91 ge ed on the uld anothe n these st Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>57 259. 4 231. - 172. Head/Discha er type of corage rout: Flow (1/s) 409.2 441.4 471.4 499.5 526.1 551.4 575.5</pre>	5 2 arge relati control dev ing calcula Depth (m) 7.000 7.500 8.000 8.500 9.000	rice other ations will be Flow (1/s) 620.8 642.3 663.0 683.1 702.6			

Stantec UK Ltd							Page 1
Caversham Bridge	House						
Waterman Place							
Reading, RG1 8DN							Micco
Date 20/04/2022		De	esigne	ed by sr	naccoll		- Micro
File	2000/		necked	-		-	Drainag
-				Control	2020	1	
Innovyze		50	burce	Control	L 2020.	. ⊥	
0	and of Decul	+	100	De De			
Summ	<u>mary of Resul</u>	<u>ts ior</u>	100	<u>year Re</u>	turn Pe	eriod (+55%)	
	Storm	Max	Max	Max	Max	Status	
	Event			Control			
		(m)	(m)		(m ³)		
	15 min Summer					О К	
	30 min Summer					Flood Risk	
	60 min Summer 120 min Summer					Flood Risk Flood Risk	
	180 min Summer				208.7	O K	
	240 min Summer				175.9		
	360 min Summer				146.8		
	480 min Summer				131.4		
	600 min Summer	0.377	0.377	154.4	120.7	0 K	
	720 min Summer				112.6		
	960 min Summer				101.0		
	1440 min Summer			88.5	86.8	OK	
	2160 min Summer 2880 min Summer			67.3 55.2			
	4320 min Summer			41.8			
	5760 min Summer			34.1		O K	
	7200 min Summer						
8	3640 min Summer	0.139	0.139	25.8	44.5	0 K	
1(0080 min Summer	0.131	0.131	23.0	42.0	O K	
	15 min Winter					Flood Risk	
	30 min Winter	0.979	0.9/9	244.4	212.1	Flood Risk	
	Storm	Raii	n Fl	oded Di	scharge	Time-Peak	
	Storm Event	Rai: (mm/h			scharge olume	Time-Peak (mins)	
			nr) Vo		-		
	Event	(mm/h	nr) Vo (lume V m³)	olume (m³)	(mins)	
	Event 15 min Summe	(mm/h er 104.5	br) Vo (lume V m ³) 0.0	olume (m ³) 367.7	(mins) 20	
	Event	(mm/h er 104.5 er 73.6	vo (546 578	lume V m³)	olume (m³)	(mins)	
	Event 15 min Summe 30 min Summe	(mm/h er 104.5 er 73.6 er 48.8	br) Vo (546 578 324	lume V m ³) 0.0 0.0	colume (m ³) 367.7 518.6	(mins) 20 28	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe	(mm/h er 104.5 er 73.6 er 48.8 er 31.3 er 23.9	Vo (546 578 324 340 964	lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0	colume (m ³) 367.7 518.6 688.0	(mins) 20 28 44 76 106	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe	(mm/h er 104.5 er 73.6 er 48.8 er 31.3 er 23.9 er 19.7	Vo (546 578 324 340 964 773	lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	olume (m ³) 367.7 518.6 688.0 883.4 1013.2 1114.8	(mins) 20 28 44 76 106 134	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe	(mm/h er 104.5 er 73.6 er 48.8 er 31.3 er 23.9 er 19.7 er 15.0	Vo 546 578 324 340 364 373 333	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	colume (m ³) 367.7 518.6 688.0 883.4 1013.2 1114.8 1271.4	(mins) 20 28 44 76 106 134 192	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe	(mm/h er 104.5 er 73.6 er 48.8 er 31.3 er 23.9 er 19.7 er 15.0 er 12.3	Vo 546 578 324 340 964 773 333 359	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	colume (m ³) 367.7 518.6 688.0 883.4 1013.2 1114.8 1271.4 1393.7	(mins) 20 28 44 76 106 134 192 252	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 360 min Summe 480 min Summe 600 min Summe	(mm/h er 104.5 er 73.6 er 48.8 er 31.3 er 23.9 er 19.7 er 15.0 er 12.3 er 10.6	Vo 646 578 324 324 340 964 333 359 511	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	colume (m ³) 367.7 518.6 688.0 883.4 1013.2 1114.8 1271.4 1393.7 1495.6	(mins) 20 28 44 76 106 134 192 252 312	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe	(mm/h er 104.5 er 73.6 er 48.8 er 31.3 er 23.9 er 19.7 er 15.0 er 12.3 er 10.6 er 9.3	Vo 646 578 324 340 964 773 333 359 511 365	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	colume (m ³) 367.7 518.6 688.0 883.4 1013.2 1114.8 1271.4 1393.7 1495.6 1584.0	(mins) 20 28 44 76 106 134 192 252 312 372	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 360 min Summe 480 min Summe 600 min Summe 720 min Summe	(mm/h er 104.5 er 73.6 er 48.8 er 31.3 er 23.9 er 19.7 er 15.0 er 12.3 er 10.6 er 9.3 er 7.6	Vo 646 578 324 340 964 973 933 359 511 365 587	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	colume (m ³) 367.7 518.6 688.0 883.4 1013.2 1114.8 1271.4 1393.7 1495.6	(mins) 20 28 44 76 106 134 192 252 312	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe	(mm/h er 104.5 er 73.6 er 48.8 er 31.3 er 23.9 er 19.7 er 15.0 er 12.3 er 10.6 er 9.3 er 7.6 er 5.8	Vo 646 578 324 340 364 364 373 333 359 511 365 587 319	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	colume (m ³) 367.7 518.6 688.0 883.4 1013.2 1114.8 1271.4 1393.7 1495.6 1584.0 1733.6	(mins) 20 28 44 76 106 134 192 252 312 372 492	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 2440 min Summe 2400 min Summe 240 min Summe 240 min Summe	(mm/h er 104.5 er 73.6 er 48.8 er 31.3 er 23.9 er 19.7 er 15.0 er 12.3 er 10.6 er 9.3 er 7.6 er 5.8 er 4.3 er 3.6	Vo 646 578 324 340 364 373 333 359 511 365 587 319 399	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	colume (m ³) 367.7 518.6 688.0 883.4 1013.2 1114.8 1271.4 1393.7 1495.6 1584.0 1733.6 1968.5	(mins) 20 28 44 76 106 134 192 252 312 372 492 736	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 2440 min Summe 2400 min Summe 360 min Summe	(mm/h er 104.5 er 73.6 er 48.8 er 31.3 er 23.9 er 19.7 er 15.0 er 12.3 er 10.6 er 9.3 er 7.6 er 5.8 er 4.3 er 3.6 er 2.7	Vo 546 578 324 340 364 373 365 511 365 511 365 511 365 511 365 511 365 511 365 511 365 511 365 511 365 511 365 511 365 503 716	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	colume (m ³) 367.7 518.6 688.0 883.4 1013.2 1114.8 1271.4 1393.7 1495.6 1584.0 1733.6 1968.5 2232.9 2438.4 2756.5	(mins) 20 28 44 76 106 134 192 252 312 372 492 736 1100 1468 2200	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 2440 min Summe 2400 min Summe 360 min Summe 3760 min Summe	(mm/h er 104.5 er 73.6 er 48.8 er 31.3 er 23.9 er 19.7 er 15.0 er 12.3 er 10.6 er 9.3 er 7.6 er 5.8 er 4.3 er 2.7 er 2.2	Vo 546 578 324 340 364 364 373 365 511 365 511 365 511 365 511 365 511 365 512 399 503 716 221	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	colume (m ³) 367.7 518.6 688.0 883.4 1013.2 1114.8 1271.4 1393.7 1495.6 1584.0 1733.6 1968.5 2232.9 2438.4 2756.5 3005.9	(mins) 20 28 44 76 106 134 192 252 312 372 492 736 1100 1468 2200 2936	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 240 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 2400 min Summe 240 min Summe	(mm/h er 104.5 er 73.6 er 48.8 er 31.3 er 23.9 er 19.7 er 15.0 er 12.3 er 10.6 er 9.3 er 7.6 er 5.8 er 4.3 er 2.7 er 2.2 er 1.8	Vo 546 578 324 340 364 364 373 365 511 365 511 365 511 365 511 365 511 365 511 365 511 365 511 365 511 365 511 365 511 365 512 399 503 716 221 399	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	colume (m ³) 367.7 518.6 688.0 883.4 1013.2 1114.8 1271.4 1393.7 1495.6 1584.0 1733.6 1968.5 2232.9 2438.4 2756.5 3005.9 3213.5	(mins) 20 28 44 76 106 134 192 252 312 372 492 736 1100 1468 2200 2936 3656	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 2400 min Summe 240 min Summe	(mm/h er 104.5 er 73.6 er 48.8 er 31.3 er 23.9 er 19.7 er 15.0 er 12.3 er 10.6 er 9.3 er 7.6 er 5.8 er 4.3 er 2.7 er 2.2 er 1.8 er 1.6	Vo 546 578 324 340 364 364 373 365 511 365 511 365 511 365 511 365 511 365 511 365 511 365 511 365 511 365 511 365 511 365 512 399 503 716 221 399 572	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	colume (m ³) 367.7 518.6 688.0 883.4 1013.2 1114.8 1271.4 1393.7 1495.6 1584.0 1733.6 1968.5 2232.9 2438.4 2756.5 3005.9 3213.5 3393.6	(mins) 20 28 44 76 106 134 192 252 312 372 492 736 1100 1468 2200 2936 3656 4376	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 2400 min Summe 240 min Summe	(mm/h er 104.5 er 73.6 er 48.8 er 31.3 er 23.9 er 19.7 er 15.0 er 12.3 er 10.6 er 7.6 er 5.8 er 4.3 er 2.7 er 2.2 er 1.8 er 1.6 er 1.5	Vo 546 578 324 340 364 373 365 511 365 511 365 511 365 511 365 511 365 511 365 511 365 511 365 511 365 511 365 511 365 511 365 527 503 716 221 399 572 501	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	colume (m ³) 367.7 518.6 688.0 883.4 1013.2 1114.8 1271.4 1393.7 1495.6 1584.0 1733.6 1968.5 2232.9 2438.4 2756.5 3005.9 3213.5 3393.6 3553.8	(mins) 20 28 44 76 106 134 192 252 312 372 492 736 1100 1468 2200 2936 3656 4376 5064	
	Event 15 min Summe 30 min Summe 60 min Summe 120 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 2400 min Summe 240 min Summe	(mm/h er 104.5 er 73.6 er 48.8 er 31.3 er 23.9 er 19.7 er 15.0 er 10.6 er 9.3 er 10.6 er 5.8 er 4.3 er 2.7 er 2.2 er 1.8 er 1.5 er 1.5	Vo 546 578 324 340 364 373 365 511 365 511 365 511 365 511 365 511 365 511 365 511 365 511 365 511 365 512 513 399 503 716 221 399 572 501 546	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	colume (m ³) 367.7 518.6 688.0 883.4 1013.2 1114.8 1271.4 1393.7 1495.6 1584.0 1733.6 1968.5 2232.9 2438.4 2756.5 3005.9 3213.5 3393.6	(mins) 20 28 44 76 106 134 192 252 312 372 492 736 1100 1468 2200 2936 3656 4376	

antec UK Ltd					
aversham Bridge Ho	use				
aterman Place					
eading, RG1 8DN					
ate 20/04/2022 16:	57	Dest	aned by	smaccol	
lle	57			Sillaceor	<u>-</u>
-			ked by	1 0000	1
novyze		Soui	ce Cont	rol 2020	. 1
~		C 1.			
Summary	of Result	s ior l	<u>JU year</u>	Return P	<u>eriod (+55%</u>
	Storm	Max M	ax Max	. Max	Status
				ol Volume	Status
	Evenc		m) (1/s		
		() (, (1)	,, (,	
60	min Winter	0.984 0.	984 244	.4 314.9	Flood Risk
	min Winter			.4 233.5	Flood Risk
	min Winter			5.8 170.2	
	min Winter				
	min Winter			124.7	
	min Winter				
	min Winter min Winter			5.4 101.6	
	min Winter min Winter			8.0 94.6 8.8 84.7	
	min Winter			.4 72.7	
	min Winter			62.4	
	min Winter			.1 56.2	
	min Winter			.2 48.3	
5760	min Winter	0.136 0.	136 24	.8 43.5	O K
7200	min Winter	0.125 0.	125 21	.1 40.0	ОК
8640	min Winter	0.117 0.	117 18	3.6 37.5	O K
10080	min Winter	0.111 0.	111 16	5.6 35.5	O K
	Storm	Rain	Flooded	Discharge	Time-Peak
	Event	(mm/hr)	Volume	Volume	(mins)
			(m³)	(m³)	
6	0 min Winter	48 824	0.0	770.6	46
	0 min Winter		0.0	989.4	78
	0 min Winter		0.0	1134.9	106
	0 min Winter			1248.6	
	0 min Winter			1424.0	
	0 min Winter			1561.0	
60	0 min Winter	10.611	0.0	1675.2	314
	0 min Winter			1774.2	
	0 min Winter			1941.8	494
	0 min Winter			2204.8	736
	0 min Winter			2500.9	
	0 min Winter			2731.0	
	0 min Winter 0 min Winter			3087.4	
	0 min Winter 0 min Winter			3366.6 3599 1	
	0 min Winter 0 min Winter			3599.1 3800.9	
	0 min Winter 0 min Winter			3980.4	
	~	T.00T	0.0	5,000.T	0100

Stantec UK Ltd	Page 3
Caversham Bridge House	
Waterman Place	
Reading, RG1 8DN	Mirro
Date 20/04/2022 16:57 Designed by smaccoll	Micro Drainage
File Checked by	Diamage
Innovyze Source Control 2020.1	
<u>Rainfall Details</u>	
Rainfall Model FSR Winter Storms	Voc
Return Period (years) 100 Cv (Summer) 0	
Region Scotland and Ireland Cv (Winter) 0	
M5-60 (mm) 16.000 Shortest Storm (mins) Ratio R 0.250 Longest Storm (mins) 1	
Summer Storms Yes Climate Change %	
<u>Time Area Diagram</u>	
Total Area (ha) 1.880	
Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha) From: To: (ha)	
0 4 0.627 4 8 0.627 8 12 0.627	
©1982-2020 Innovyze	

					Page 4			
Caversham Bridge House								
Waterman Place								
Reading, RG1 8DN					Micco			
Date 20/04/2022 16:57	Design	ned by sm	accoll					
File	Checke	ed by			Diamaye			
Innovyze								
1	<u>Model D</u>	<u>etails</u>						
Storage is Or	line Co	ver Level	(m) 1.000					
Tank	or Pond	d Structu	ire					
Inve	rt Level	L (m) 0.00	0					
Depth (m) Area (m ²) Dep	oth (m)	Area (m²)	Depth (m)	Area (m²)				
0.000 320.0	1.000	320.0	1.001	0.0				
<u>Hydro-Brake®</u>	Optimu	um Outflo	w Control					
Unit Reference			MD-SH	E-0576-244	4-1000-2444			
Design Head (m) Design Flow (l/s)					1.000 244.4			
Flush-Flo™					Calculated			
Objective			Mini	mise upstre	eam storage			
Application					Surface			
Sump Available					Yes			
Diameter (mm) Invert Level (m)					576 0.000			
Minimum Outlet Pipe Diameter (mm) S	ite Spea	cific Desi	qn (Contact	Hydro Inte				
Suggested Manhole Diameter (mm) S	-		-	-				
Control Po	ints	Head (n	1) Flow (1/s	5)				
Design Point (Ca	lculate	d) 1.00	0 244.	3				
E	lush-Fl							
	Kick-Fl	o® 0.94	4 237.	6				
Moon Tion mon	Iccd Dom	~ ~		0				
Mean Flow over H	lead Ran	ge	- 166.	0				
The hydrological calculations have 1	been bas	sed on the	- 166. Head/Discha	arge relati	-			
The hydrological calculations have b the Hydro-Brake® Optimum as specific	been bas ed. Shc	sed on the ould anothe	- 166. Head/Dischater type of o	arge relati control dev	vice other			
The hydrological calculations have 1	been bas ed. Shc	sed on the ould anothe	- 166. Head/Dischater type of o	arge relati control dev	vice other			
The hydrological calculations have b the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util:	been bas ed. Shc ised the	sed on the ould anothe en these st	- 166. Head/Discha er type of c corage rout:	arge relati control dev .ng calcula	vice other ations will be			
The hydrological calculations have by the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be utili- invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 13.7 1.200	been bas ed. Sho ised the 7 (1/s) 267.1	sed on the puld anothe en these st Depth (m) 3.000	 166. Head/Discharter type of of corage rout: Flow (1/s) 418.7 	arge relati control dev ng calcula Depth (m) 7.000	rice other ations will be Flow (1/s) 635.6			
The hydrological calculations have by the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be utili- invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 13.7 1.200 0.200 51.0 1.400	been bas ed. Sho ised the (1/s) 267.1 288.0	sed on the puld anothe en these st Depth (m) 3.000 3.500	 166. Head/Discharter type of of corage rout: Flow (1/s) 418.7 451.7 	arge relati control dev ng calcula Depth (m) 7.000 7.500	rice other ations will be Flow (1/s) 635.6 657.6			
The hydrological calculations have a the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util: invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 13.7 1.200 0.200 51.0 1.400 0.300 105.5 1.600	been bas ed. Sho ised the 267.1 288.0 307.5	sed on the puld anothe en these st Depth (m) 3.000 3.500 4.000	 166. Head/Discharter type of of corage rout: Flow (1/s) 418.7 451.7 482.3 	Depth (m) 7.000 8.000	rice other ations will be Flow (1/s) 635.6 657.6 678.8			
The hydrological calculations have a the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util: invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 13.7 1.200 0.200 51.0 1.400 0.300 105.5 1.600 0.400 169.1 1.800	been bas ed. Sho ised the 267.1 288.0 307.5 325.8	sed on the puld anothe en these st Depth (m) 3.000 3.500 4.000 4.500	 166. Head/Discharter type of of corage rout: Flow (1/s) 418.7 451.7 482.3 511.2 	Depth (m) 7.000 7.500 8.000 8.500	rice other ations will be Flow (1/s) 635.6 657.6 678.8 699.5			
The hydrological calculations have a the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util: invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 13.7 1.200 0.200 51.0 1.400 0.300 105.5 1.600	been bas ed. Sho ised the 267.1 288.0 307.5	sed on the puld anothe en these st Depth (m) 3.000 3.500 4.000	 166. Head/Discharter type of of corage rout: Flow (1/s) 418.7 451.7 482.3 	Depth (m) 7.000 8.000	rice other ations will be Flow (1/s) 635.6 657.6 678.8			
The hydrological calculations have a the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util: invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 13.7 1.200 0.200 51.0 1.400 0.300 105.5 1.600 0.400 169.1 1.800 0.500 230.6 2.000 0.600 241.2 2.200 0.800 243.7 2.400	<pre>been bas ed. Sho ised the 267.1 288.0 307.5 325.8 343.1 359.5 375.2</pre>	sed on the puld anothe en these st Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>- 166. Head/Dischar er type of of corage rout: Flow (1/s) 418.7 451.7 482.3 511.2 538.4 564.3 589.0</pre>	Depth (m) 7.000 7.500 8.000 9.000	rice other attions will be Flow (1/s) 635.6 657.6 678.8 699.5 719.5			
The hydrological calculations have a the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util: invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 13.7 1.200 0.200 51.0 1.400 0.300 105.5 1.600 0.400 169.1 1.800 0.500 230.6 2.000 0.600 241.2 2.200	ceen bas ed. Sho ised the 267.1 288.0 307.5 325.8 343.1 359.5	sed on the puld anothe en these st Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500	- 166. Head/Discharter type of of corage rout: Flow (1/s) 418.7 451.7 482.3 511.2 538.4 564.3	Depth (m) 7.000 7.500 8.000 9.000	rice other attions will be Flow (1/s) 635.6 657.6 678.8 699.5 719.5			
The hydrological calculations have a the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util: invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 13.7 1.200 0.200 51.0 1.400 0.300 105.5 1.600 0.400 169.1 1.800 0.500 230.6 2.000 0.600 241.2 2.200 0.800 243.7 2.400	<pre>been bas ed. Sho ised the 267.1 288.0 307.5 325.8 343.1 359.5 375.2</pre>	sed on the puld anothe en these st Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>- 166. Head/Dischar er type of of corage rout: Flow (1/s) 418.7 451.7 482.3 511.2 538.4 564.3 589.0</pre>	Depth (m) 7.000 7.500 8.000 9.000	rice other attions will be Flow (1/s) 635.6 657.6 678.8 699.5 719.5			
The hydrological calculations have a the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util: invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 13.7 1.200 0.200 51.0 1.400 0.300 105.5 1.600 0.400 169.1 1.800 0.500 230.6 2.000 0.600 241.2 2.200 0.800 243.7 2.400	<pre>been bas ed. Sho ised the 267.1 288.0 307.5 325.8 343.1 359.5 375.2</pre>	sed on the puld anothe en these st Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>- 166. Head/Dischar er type of of corage rout: Flow (1/s) 418.7 451.7 482.3 511.2 538.4 564.3 589.0</pre>	Depth (m) 7.000 7.500 8.000 9.000	rice other attions will be Flow (1/s) 635.6 657.6 678.8 699.5 719.5			
The hydrological calculations have a the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util: invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 13.7 1.200 0.200 51.0 1.400 0.300 105.5 1.600 0.400 169.1 1.800 0.500 230.6 2.000 0.600 241.2 2.200 0.800 243.7 2.400	<pre>been bas ed. Sho ised the 267.1 288.0 307.5 325.8 343.1 359.5 375.2</pre>	sed on the puld anothe en these st Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>- 166. Head/Dischar er type of of corage rout: Flow (1/s) 418.7 451.7 482.3 511.2 538.4 564.3 589.0</pre>	Depth (m) 7.000 7.500 8.000 9.000	rice other attions will be Flow (1/s) 635.6 657.6 678.8 699.5 719.5			
The hydrological calculations have a the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util: invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 13.7 1.200 0.200 51.0 1.400 0.300 105.5 1.600 0.400 169.1 1.800 0.500 230.6 2.000 0.600 241.2 2.200 0.800 243.7 2.400	<pre>been bas ed. Sho ised the 267.1 288.0 307.5 325.8 343.1 359.5 375.2</pre>	sed on the puld anothe en these st Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>- 166. Head/Dischar er type of of corage rout: Flow (1/s) 418.7 451.7 482.3 511.2 538.4 564.3 589.0</pre>	Depth (m) 7.000 7.500 8.000 9.000	rice other attions will be Flow (1/s) 635.6 657.6 678.8 699.5 719.5			
The hydrological calculations have a the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util: invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 13.7 1.200 0.200 51.0 1.400 0.300 105.5 1.600 0.400 169.1 1.800 0.500 230.6 2.000 0.600 241.2 2.200 0.800 243.7 2.400	<pre>been bas ed. Sho ised the 267.1 288.0 307.5 325.8 343.1 359.5 375.2</pre>	sed on the puld anothe en these st Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>- 166. Head/Dischar er type of of corage rout: Flow (1/s) 418.7 451.7 482.3 511.2 538.4 564.3 589.0</pre>	Depth (m) 7.000 7.500 8.000 9.000	rice other attions will be Flow (1/s) 635.6 657.6 678.8 699.5 719.5			
The hydrological calculations have a the Hydro-Brake® Optimum as specific than a Hydro-Brake Optimum® be util: invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 13.7 1.200 0.200 51.0 1.400 0.300 105.5 1.600 0.400 169.1 1.800 0.500 230.6 2.000 0.600 241.2 2.200 0.800 243.7 2.400	<pre>been bas ed. Sho ised the 267.1 288.0 307.5 325.8 343.1 359.5 375.2</pre>	sed on the puld anothe en these st Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	<pre>- 166. Head/Dischar er type of of corage rout: Flow (1/s) 418.7 451.7 482.3 511.2 538.4 564.3 589.0</pre>	Depth (m) 7.000 7.500 8.000 9.000	rice other attions will be Flow (1/s) 635.6 657.6 678.8 699.5 719.5			

Stantec UK Ltd						Page 1
Caversham Bridge House						
Waterman Place						
Reading, RG1 8DN						Micco
Date 20/04/2022 17:05		ociana	ed by sr	naccoll		– Micro
		2	-	llaccori	-	Drainago
File		hecked				
Innovyze	S	ource	Control	1 2020.	.1	
<u>Summary of Re</u>	sults for	200	year Re	turn Pe	eriod (+55%)	
Storm	Max	Max	Max	Max	Status	
Event	Level	Depth	Control	Volume		
	(m)	(m)	(l/s)	(m³)		
15 min Cou		0 604	044 E	E12 0	0 17	
	mmer 0.604 mmer 0.774				O K Flood Risk	
	mmer 0.891				Flood Risk	
120 min Sur					Flood Risk	
120 min Su 180 min Su					Flood Risk	
240 min Su					Flood Risk	
360 min Su				583.8	O K	
480 min Sur				522.2		
600 min Sur				475.5		
720 min Sur	mmer 0.517	0.517	210.1	439.4	0 K	
960 min Sur	mmer 0.456	0.456	182.3	388.0	O K	
1440 min Sur	mmer 0.387	0.387	144.8	329.1	O K	
2160 min Sur				280.1		
2880 min Sur				250.1		
4320 min Sur				213.3		
5760 min Sur 7200 min Sur				190.5		
7200 min Sur 8640 min Sur				174.7 162.8	ОК	
10080 min Su				153.4	0 K	
	nter 0.672			570.9		
30 min Wi:	nter 0.875	0.875			Flood Risk	
	_					
Storm Event	Ra:			scharge Volume	Time-Peak	
Event	(11111)	nr) vo			(mins)	
		(
			m ³)	(m³)		
	ummer 121.	274	m³) 0.0	(m³) 648.5	21	
30 min S	ummer 85.	274 866	m³) 0.0 0.0	(m ³) 648.5 920.9	30	
30 min S 60 min S	ummer 85. ummer 56.	274 866 794	m³) 0.0 0.0 0.0	(m ³) 648.5 920.9 1223.6	30 48	
30 min S 60 min S 120 min S	ummer 85. ummer 56. ummer 36.	274 866 794 279	m³) 0.0 0.0 0.0 0.0	(m ³) 648.5 920.9 1223.6 1564.0	30 48 82	
30 min S 60 min S 120 min S 180 min S	ummer 85. ummer 56. ummer 36. ummer 27.	274 866 794 279 635	m³) 0.0 0.0 0.0 0.0 0.0	(m ³) 648.5 920.9 1223.6 1564.0 1787.5	30 48 82 114	
30 min S 60 min S 120 min S 180 min S 240 min S	ummer 85. ummer 56. ummer 36. ummer 27. ummer 22.	274 866 794 279 635 740	m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(m ³) 648.5 920.9 1223.6 1564.0 1787.5 1961.4	30 48 82 114 144	
30 min S 60 min S 120 min S 180 min S	ummer 85. ummer 56. ummer 36. ummer 27. ummer 22. ummer 17.	274 866 794 279 635 740 215	m³) 0.0 0.0 0.0 0.0 0.0	(m ³) 648.5 920.9 1223.6 1564.0 1787.5	30 48 82 114	
30 min S 60 min S 120 min S 180 min S 240 min S 360 min S	ummer 85. ummer 56. ummer 36. ummer 27. ummer 22. ummer 17. ummer 14.	274 866 794 279 635 740 215 108	m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(m ³) 648.5 920.9 1223.6 1564.0 1787.5 1961.4 2227.6	30 48 82 114 144 204	
30 min S 60 min S 120 min S 180 min S 240 min S 360 min S 480 min S	ummer 85. ummer 56. ummer 36. ummer 27. ummer 22. ummer 17. ummer 14. ummer 12.	274 866 794 279 635 740 215 108	m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(m ³) 648.5 920.9 1223.6 1564.0 1787.5 1961.4 2227.6 2434.2	30 48 82 114 144 204 264	
30 min S 60 min S 120 min S 180 min S 240 min S 360 min S 480 min S 600 min S	ummer 85. ummer 56. ummer 36. ummer 27. ummer 22. ummer 17. ummer 14. ummer 12. ummer 10.	274 866 794 279 635 740 215 108 081	m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 648.5 920.9 1223.6 1564.0 1787.5 1961.4 2227.6 2434.2 2605.8	30 48 82 114 144 204 264 324	
30 min S 60 min S 120 min S 180 min S 240 min S 360 min S 480 min S 720 min S 960 min S 1440 min S	ummer 85. ummer 56. ummer 26. ummer 22. ummer 17. ummer 14. ummer 10. ummer 8. ummer 6.	274 866 794 279 635 740 215 108 081 640 705 559	m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 648.5 920.9 1223.6 1564.0 1787.5 1961.4 2227.6 2434.2 2605.8 2754.0	30 48 82 114 144 204 264 324 384 502 742	
30 min S 60 min S 120 min S 180 min S 240 min S 360 min S 480 min S 720 min S 960 min S 1440 min S 2160 min S	ummer 85. ummer 56. ummer 26. ummer 27. ummer 22. ummer 17. ummer 14. ummer 10. ummer 8. ummer 6. ummer 4.	274 866 794 279 635 740 215 108 081 640 705 559 935	m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 648.5 920.9 1223.6 1564.0 1787.5 1961.4 2227.6 2434.2 2605.8 2754.0 3004.0 3394.5 3834.8	30 48 82 114 144 204 264 324 384 502 742 1108	
30 min S 60 min S 120 min S 180 min S 240 min S 360 min S 480 min S 600 min S 720 min S 960 min S 1440 min S 2160 min S	ummer 85. ummer 56. ummer 26. ummer 27. ummer 22. ummer 17. ummer 14. ummer 10. ummer 8. ummer 4. ummer 4.	274 866 794 279 635 740 215 108 081 640 705 559 935 027	m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 648.5 920.9 1223.6 1564.0 1787.5 1961.4 2227.6 2434.2 2605.8 2754.0 3004.0 3394.5 3834.8 4172.0	30 48 82 114 204 264 324 384 502 742 1108 1472	
30 min S 60 min S 120 min S 180 min S 240 min S 360 min S 480 min S 600 min S 720 min S 960 min S 1440 min S 2160 min S 2880 min S	ummer 85. ummer 56. ummer 36. ummer 27. ummer 22. ummer 17. ummer 14. ummer 10. ummer 10. ummer 6. ummer 4. ummer 3.	274 866 794 279 635 740 215 108 081 640 705 559 935 027 018	m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 648.5 920.9 1223.6 1564.0 1787.5 1961.4 2227.6 2434.2 2605.8 2754.0 3004.0 3394.5 3834.8 4172.0 4688.6	30 48 82 114 144 204 264 324 384 502 742 1108 1472 2204	
30 min S 60 min S 120 min S 180 min S 240 min S 360 min S 480 min S 600 min S 720 min S 960 min S 1440 min S 2160 min S 2880 min S 4320 min S	ummer 85. ummer 56. ummer 36. ummer 27. ummer 22. ummer 17. ummer 14. ummer 12. ummer 10. ummer 8. ummer 4. ummer 4. ummer 3. ummer 2.	274 866 794 279 635 740 215 108 081 640 705 559 935 027 018 458	m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 648.5 920.9 1223.6 1564.0 1787.5 1961.4 2227.6 2434.2 2605.8 2754.0 3004.0 3394.5 3834.8 4172.0 4688.6 5095.7	30 48 82 114 144 204 264 324 384 502 742 1108 1472 2204 2936	
30 min S 60 min S 120 min S 180 min S 240 min S 360 min S 480 min S 600 min S 720 min S 960 min S 1440 min S 2160 min S 2880 min S 4320 min S 5760 min S	ummer 85. ummer 56. ummer 36. ummer 27. ummer 22. ummer 17. ummer 14. ummer 12. ummer 10. ummer 8. ummer 4. ummer 4. ummer 3. ummer 2.	274 866 794 279 635 740 215 108 081 640 705 559 935 027 018 458 096	m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 648.5 920.9 1223.6 1564.0 1787.5 1961.4 2227.6 2434.2 2605.8 2754.0 3004.0 3394.5 3834.8 4172.0 4688.6 5095.7 5430.1	30 48 82 114 144 204 264 324 384 502 742 1108 1472 2204 2936 3672	
30 min S 60 min S 120 min S 180 min S 240 min S 360 min S 480 min S 600 min S 720 min S 960 min S 1440 min S 2160 min S 2880 min S 4320 min S 5760 min S 7200 min S	ummer 85. ummer 56. ummer 36. ummer 27. ummer 22. ummer 17. ummer 14. ummer 12. ummer 10. ummer 10. ummer 4. ummer 4. ummer 3. ummer 2. ummer 2. ummer 1.	274 866 794 279 635 740 215 108 081 640 705 559 935 027 018 458 096 840	m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 648.5 920.9 1223.6 1564.0 1787.5 1961.4 2227.6 2434.2 2605.8 2754.0 3004.0 3394.5 3834.8 4172.0 4688.6 5095.7 5430.1 5719.0	30 48 82 114 144 204 264 324 384 502 742 1108 1472 2204 2936 3672 4400	
30 min S 60 min S 120 min S 120 min S 240 min S 360 min S 480 min S 600 min S 720 min S 960 min S 1440 min S 2880 min S 2880 min S 5760 min S 7200 min S 5760 min S 8640 min S	ummer 85. ummer 56. ummer 36. ummer 27. ummer 22. ummer 17. ummer 14. ummer 12. ummer 10. ummer 10. ummer 4. ummer 4. ummer 3. ummer 2. ummer 2. ummer 1. ummer 1.	274 866 794 279 635 740 215 108 081 640 705 559 935 027 018 458 096 840 648	m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 648.5 920.9 1223.6 1564.0 1787.5 1961.4 2227.6 2434.2 2605.8 2754.0 3004.0 3394.5 3834.8 4172.0 4688.6 5095.7 5430.1 5719.0 5974.2	30 48 82 114 144 204 264 324 384 502 742 1108 1472 2204 2936 3672 4400 5120	
30 min S 60 min S 120 min S 120 min S 240 min S 360 min S 480 min S 600 min S 720 min S 960 min S 2480 min S 2480 min S 2880 min S 4320 min S 5760 min S 7200 min S 5760 min S 8640 min S	ummer 85. ummer 56. ummer 36. ummer 27. ummer 22. ummer 17. ummer 14. ummer 12. ummer 10. ummer 10. ummer 4. ummer 4. ummer 3. ummer 2. ummer 2. ummer 1. ummer 1.	274 866 794 279 635 740 215 108 081 640 705 559 935 027 018 458 096 840 648 274	m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 648.5 920.9 1223.6 1564.0 1787.5 1961.4 2227.6 2434.2 2605.8 2754.0 3004.0 3394.5 3834.8 4172.0 4688.6 5095.7 5430.1 5719.0 5974.2 727.1	30 48 82 114 144 204 264 324 384 502 742 1108 1472 2204 2936 3672 4400	
30 min S 60 min S 120 min S 120 min S 240 min S 360 min S 480 min S 600 min S 720 min S 960 min S 1440 min S 2880 min S 2880 min S 5760 min S 5760 min S 7200 min S 5760 min S 10080 min S 15 min W	ummer 85. ummer 56. ummer 36. ummer 27. ummer 22. ummer 17. ummer 14. ummer 12. ummer 10. ummer 10. ummer 4. ummer 4. ummer 3. ummer 2. ummer 2. ummer 1. ummer 1.	274 866 794 279 635 740 215 108 081 640 705 559 935 027 018 458 096 840 648	m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 648.5 920.9 1223.6 1564.0 1787.5 1961.4 2227.6 2434.2 2605.8 2754.0 3004.0 3394.5 3834.8 4172.0 4688.6 5095.7 5430.1 5719.0 5974.2	30 48 82 114 144 204 264 324 384 502 742 1108 1472 2204 2936 3672 4400 5120 21	

Caversham Bridge Ho						
	use					
aterman Place						
eading, RG1 8DN						
Date 20/04/2022 17:	0.5	Des	iane	d by sr	naccoll	
File			ecked	-		
-				-		1
Innovyze				Control		
Summary	y of Result	s for 2	<u>200 y</u>	<u>year Re</u>	turn Pe	eriod (+55%
	Storm	Max	Max	Max	Max	Status
	Event	Level D	epth	Control	Volume	
		(m)	(m)	(l/s)	(m³)	
60	min Winter	0 007 0	007	201 2	017 1	Flood Risk
) min Winter					Flood Risk
) min Winter					Flood Risk
	min Winter					Flood Risk
) min Winter				524.1	
	min Winter				453.5	
) min Winter				405.6	
) min Winter				371.9	
	min Winter			144.0		ОК
	min Winter			110.0		ОК
	min Winter				234.6	ОК
2880	min Winter	0.246 0	.246		209.2	ОК
	min Winter			51.3		ОК
5760	min Winter	0.188 0	.188	41.7	159.7	ОК
7200	min Winter	0.173 0	.173	35.7	146.6	ОК
8640	min Winter	0.161 0	.161	31.2	136.7	ОК
10080	min Winter	0.152 0	.152	28.0	128.8	O K
	Storm	Rain	Flo	oded Di	scharge	Time-Peak
	Event	(mm/hr			olume	(mins)
		• •	-			
			(1	m³)	(m³)	
(0 min Winter	56.79		m³) 0.0	(m ³) 1370.8	52
	50 min Winter 20 min Winter		4			52 88
12		36.27	4	0.0	1370.8	
12	0 min Winter	36.27 27.63	4 9 5	0.0 0.0	1370.8 1752.1	88 120
12 18 24	20 min Winter 30 min Winter	36.27 27.63 22.74	4 9 5 0	0.0 0.0 0.0	1370.8 1752.1 2002.4	88 120 148
12 18 24 36 48	20 min Winter 30 min Winter 40 min Winter 50 min Winter 30 min Winter	36.27 27.63 22.74 17.21 14.10	4 9 5 0 5 8	0.0 0.0 0.0 0.0	1370.8 1752.1 2002.4 2197.2	88 120 148
12 18 24 36 48	20 min Winter 30 min Winter 40 min Winter 50 min Winter	36.27 27.63 22.74 17.21 14.10	4 9 5 0 5 8	0.0 0.0 0.0 0.0 0.0	1370.8 1752.1 2002.4 2197.2 2495.3	88 120 148 210
12 18 24 36 48 60	20 min Winter 30 min Winter 40 min Winter 50 min Winter 30 min Winter	36.27 27.63 22.74 17.21 14.10 12.08	4 9 5 0 5 8 1	0.0 0.0 0.0 0.0 0.0 0.0	1370.8 1752.1 2002.4 2197.2 2495.3 2726.8	88 120 148 210 270
12 18 24 36 48 60 72 96	20 min Winter 30 min Winter 40 min Winter 50 min Winter 50 min Winter 50 min Winter 50 min Winter 50 min Winter	36.27 27.63 22.74 17.21 14.10 12.08 10.64 8.70	4 9 5 0 5 8 1 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	1370.8 1752.1 2002.4 2197.2 2495.3 2726.8 2918.9	88 120 148 210 270 328
12 18 24 36 48 60 72 96	20 min Winter 00 min Winter 10 min Winter 10 min Winter 10 min Winter 10 min Winter 20 min Winter	36.27 27.63 22.74 17.21 14.10 12.08 10.64 8.70 6.55	4 9 5 0 5 8 1 0 5 9	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1370.8 1752.1 2002.4 2197.2 2495.3 2726.8 2918.9 3084.9	88 120 148 210 270 328 388
12 18 24 36 48 60 72 90 144 216	20 min Winter 30 min Winter 40 min Winter 50 min Winter	36.27 27.63 22.74 17.21 14.10 12.08 10.64 8.70 6.55 4.93	4 9 5 0 5 8 1 0 5 9 5 5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1370.8 1752.1 2002.4 2197.2 2495.3 2726.8 2918.9 3084.9 3365.0 3802.6 4295.3	88 120 148 210 270 328 388 508
12 18 24 36 48 60 72 96 144 216 288	20 min Winter 30 min Winter 40 min Winter 50 min Winter	36.27 27.63 22.74 17.21 14.10 12.08 10.64 8.70 6.55 4.93 4.02	4 9 5 0 5 8 1 0 5 9 9 5 7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1370.8 1752.1 2002.4 2197.2 2495.3 2726.8 2918.9 3084.9 3365.0 3802.6 4295.3 4673.0	88 120 148 210 270 328 388 508 748 1108 1472
12 18 24 36 48 60 72 96 144 216 288 432	20 min Winter 30 min Winter 40 min Winter 50 min Winter	36.27 27.63 22.74 17.21 14.10 12.08 10.64 8.70 6.55 4.93 4.02 3.01	4 9 5 0 5 8 1 0 5 9 9 5 7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1370.8 1752.1 2002.4 2197.2 2495.3 2726.8 2918.9 3084.9 3365.0 3802.6 4295.3	88 120 148 210 270 328 388 508 748 1108
12 18 24 36 48 60 72 96 144 216 288 432 576	20 min Winter 30 min Winter 40 min Winter 50 min Winter	36.27 27.63 22.74 17.21 14.10 12.08 10.64 8.70 6.55 4.93 4.02 3.01 2.45	4 9 5 0 5 8 1 0 5 9 5 7 8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1370.8 1752.1 2002.4 2197.2 2495.3 2726.8 2918.9 3084.9 3365.0 3802.6 4295.3 4673.0	88 120 148 210 270 328 388 508 748 1108 1472 2204
12 18 24 36 48 60 72 96 144 216 288 432 576 720	20 min Winter 30 min Winter 40 min Winter 50 min Winter	36.27 27.63 22.74 17.21 14.10 12.08 10.64 8.70 6.55 4.93 4.02 3.01 2.45 2.09	4 9 5 0 5 8 1 0 5 9 5 7 8 8 6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1370.8 1752.1 2002.4 2197.2 2495.3 2726.8 2918.9 3084.9 3365.0 3802.6 4295.3 4673.0 5252.2	88 120 148 210 270 328 388 508 748 1108 1472 2204 2936
12 18 24 36 48 60 72 96 144 216 288 432 576 720 864	20 min Winter 30 min Winter 40 min Winter 50 min Winter	36.27 27.63 22.74 17.21 14.10 12.08 10.64 8.70 6.55 4.93 4.02 3.01 2.45 2.09 1.84	4 9 5 0 5 8 1 0 5 9 5 7 8 8 6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1370.8 1752.1 2002.4 2197.2 2495.3 2726.8 2918.9 3084.9 3365.0 3802.6 4295.3 4673.0 5252.2 5707.4	88 120 148 210 270 328 388 508 748 1108 1472 2204 2936 3656

Stantec UK Ltd		Page 3
Caversham Bridge House		
Waterman Place		
Reading, RG1 8DN		Mirm
	Designed by smaccoll	Micro Drainage
	Checked by	Diamage
Innovyze	Source Control 2020.1	
<u>Rai</u>	<u>nfall Details</u>	
Rainfall Model	FSR Winter Storms	Yes
Return Period (years)	200 Cv (Summer) 0.	750
	d and Ireland Cv (Winter) 0.	
M5-60 (mm) Ratio R	16.000 Shortest Storm (mins) 0.250 Longest Storm (mins) 10	
Summer Storms		+55
<u>Tim</u>	<u>e Area Diagram</u>	
Tota	l Area (ha) 2.880	
	me (mins) Area Time (mins) Area m: To: (ha) From: To: (ha)	
0 4 0.960	4 8 0.960 8 12 0.960	
©1983	2-2020 Innovyze	

Stantec UK Ltd					Page 4			
Caversham Bridge House								
Waterman Place								
Reading, RG1 8DN					Micco			
Date 20/04/2022 17:05	Desig	ned by sm	accoll					
File	Check	ed by			Diamaye			
Innovyze								
	Model 1	<u>Details</u>						
Storage is C	nline C	over Level	(m) 1.000					
Tank	or Pon	d Structu	ire					
Inv	ert Leve	1 (m) 0.00	0					
Depth (m) Area (m²) De	pth (m)	Area (m²)	Depth (m)	Area (m²)				
0.000 850.0	1.000	850.0	1.001	0.0				
<u>Hydro-Brake</u>	<u>Optim</u>	uum Outflo	<u>w Control</u>					
Unit Reference			MD-CH	E-0543-293	1-1200-2931			
Design Head (m) Design Flow (l/s)					1.200 293.1			
Flush-Flo™					Calculated			
Objective			Mini	mise upstr	eam storage			
Application					Surface			
Sump Available					Yes			
Diameter (mm) Invert Level (m)					543 0.000			
Minimum Outlet Pipe Diameter (mm)	Site Spe	cific Desi	gn (Contact	Hydro Int				
Suggested Manhole Diameter (mm)	-		-	-				
Control Po	oints	Head (m	n) Flow (l/s	5)				
Design Point (C	alculate	ed) 1.20	0 292.	. 5				
	Flush-F			. 8				
Macon Electroneu	Kick-F							
Mean Flow over	пеац ка	ige	- 190.	. 5				
The hydrological calculations have								
the Hydro-Brake® Optimum as specifi								
than a Hydro-Brake Optimum® be util invalidated	ised th	en these st	corage rout:	ing calcula	tions will be			
Depth (m) Flow (l/s) Depth (m) Flo	w (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)			
0.100 12.6 1.200	292.5	3.000	459.0	7.000	696.4			
0.200 46.8 1.400 0.300 96.1 1.600	315.5 336.9	3.500 4.000	495.1 528.8	7.500	720.5 743.8			
0.400 152.1 1.800	357.0	4.000	560.3	8.500	766.3			
0.500 202.8 2.000	376.0	5.000	590.1	9.000	788.2			
0.600 243.1 2.200	394.0	5.500	618.5	9.500	809.4			
0.800 291.7 2.400	411.2		645.5					
1.000 268.0 2.600	427.8	6.500	671.5					
1	12,10							
	12,10							
	127.0							
		0 Innovyze						

Stantec UK Ltd		Page 1
Caversham Bridge House		
Waterman Place		
Reading, RG1 8DN		Micro
Date 19/04/2022 09:56	Designed by smaccoll	Drainage
File	Checked by	Diamage
Innovyze	Source Control 2020.1	

Input

Return Period (yea	ırs)	200		Soil	0.45	50
Area ((ha)	9.600		Urban	0.08	30
SAAR ((mm)	1392	Region	Number	Region	2

Results 1/s

QBAR Rural 94.3 QBAR Urban 105.1 Q200 years 293.1 Q1 year 91.4 Q30 years 194.1 Q100 years 261.0

Stantec UK Ltd		Page 1
Caversham Bridge House		
Waterman Place		
Reading, RG1 8DN		Micro
Date 18/04/2022 14:29	Designed by smaccoll	Drainage
File	Checked by	Diamage
Innovyze	Source Control 2020.1	

Input

Return	Period	(ye	ears)	2		Soil	0.45	50
	Ar	rea	(ha)	9.600		Urban	0.30	00
	SA	AR	(mm)	1392	Region	Number	Region	2

Results 1/s

QBAR Rural 94.3 QBAR Urban 137.1 Q2 years 130.3 Q1 year 119.3 Q30 years 234.9 Q100 years 294.8

Stantec UK Ltd		Page 1
Caversham Bridge House		
Waterman Place		
Reading, RG1 8DN		Micro
Date 19/04/2022 09:57	Designed by smaccoll	Drainage
File	Checked by	Diamage
Innovyze	Source Control 2020.1	

Input

Return Peri	od (ye	ears)	200		Soil	0.450
	Area	(ha)	9.400		Urban	0.010
	SAAR	(mm)	1392	Region	Number	Region 2

Results 1/s

QBAR Rural 92.3 QBAR Urban 93.6 Q200 years 276.7 Q1 year 81.4 Q30 years 177.0 Q100 years 244.4

Stantec UK Ltd		Page 1
Caversham Bridge House		
Waterman Place		
Reading, RG1 8DN		Micro
Date 18/04/2022 13:56	Designed by smaccoll	Drainage
File	Checked by	Diamage
Innovyze	Source Control 2020.1	

Input

Return	Period	(ye	ears)	2		Soil	0.45	50
	Ar	rea	(ha)	9.400		Urban	0.20	00
	SA	AR	(mm)	1392	Region	Number	Region	2

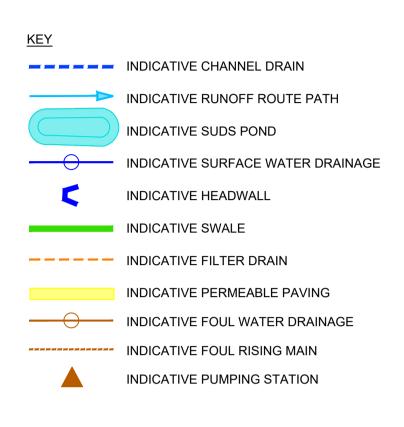
Results 1/s

QBAR Rural 92.3 QBAR Urban 119.6 Q2 years 112.2 Q1 year 104.1 Q30 years 211.8 Q100 years 271.9

Appendix F Conceptual Drainage and SuDS Layout

Stantec UK Limited EDINBURGH

3rd Floor, Randolph House, 4 Charlotte Lane, Edinburgh


EH2 4QZ Tel: +44 131 297 7010 www.stantec.com/uk

Copyright Reserved

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

Notes

UTILITIES NOTE: The position of any existing public or private sewers, utility services, plant or apparatus shown on this drawing is believed to be correct, but no warranty to this is expressed or implied. Other such plant or apparatus may also be present but not shown. The Contractor is therefore advised to undertake their own investigation where the presence of any existing sewers, services, plant or apparatus may affect their operations.

P01 -		-	-	-
Issued/Revision		Ву	Appd	YYYY.MM.DD
	SM	SM	DW	2022.04.29
	Dwn.	Dsgn.	Chkd.	YYYY.MM.DD

Issue Status

FOR INFORMATION ONLY

This document is suitable only for the purpose noted above. Use of this document for any other purpose is not permitted.

Client/Project Logo

Client/Project FLAMINGO LAND AND SCOTTISH ENTERPRISE LOMOND BANKS

DRAINAGE STRATEGY

Title

CONCEPTUAL DRAINAGE AND SUDS

Project No. 332010549 Scale 1:2000

Revision